首页 > 代码库 > SuperMemo(POJ 3580)
SuperMemo(POJ 3580)
Time Limit: 5000MS | Memory Limit: 65536K | |
Case Time Limit: 2000MS |
Description
Your friend, Jackson is invited to a TV show called SuperMemo in which the participant is told to play a memorizing game. At first, the host tells the participant a sequence of numbers, {A1, A2, ... An}. Then the host performs a series of operations and queries on the sequence which consists:
- ADD x y D: Add D to each number in sub-sequence {Ax ... Ay}. For example, performing "ADD 2 4 1" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5, 5}
- REVERSE x y: reverse the sub-sequence {Ax ... Ay}. For example, performing "REVERSE 2 4" on {1, 2, 3, 4, 5} results in {1, 4, 3, 2, 5}
- REVOLVE x y T: rotate sub-sequence {Ax ... Ay} T times. For example, performing "REVOLVE 2 4 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 2, 5}
- INSERT x P: insert P after Ax. For example, performing "INSERT 2 4" on {1, 2, 3, 4, 5} results in {1, 2, 4, 3, 4, 5}
- DELETE x: delete Ax. For example, performing "DELETE 2" on {1, 2, 3, 4, 5} results in {1, 3, 4, 5}
- MIN x y: query the participant what is the minimum number in sub-sequence {Ax ... Ay}. For example, the correct answer to "MIN 2 4" on {1, 2, 3, 4, 5} is 2
To make the show more interesting, the participant is granted a chance to turn to someone else that means when Jackson feels difficult in answering a query he may call you for help. You task is to watch the TV show and write a program giving the correct answer to each query in order to assist Jackson whenever he calls.
Input
The first line contains n (n ≤ 100000).
The following n lines describe the sequence.
Then follows M (M ≤ 100000), the numbers of operations and queries.
The following M lines describe the operations and queries.
Output
For each "MIN" query, output the correct answer.
Sample Input
51 2 3 4 52ADD 2 4 1MIN 4 5
Sample Output
5
Source
#include<set>#include<queue>#include<cstdio>#include<cstdlib>#include<cstring>#include<iostream>#include<algorithm>using namespace std;const int N = 100100;#define fa(i) (T[i].p)#define L(i) (T[i].s[0])#define R(i) (T[i].s[1])#define Key (L(R(root)))#define Loc(i) (T[fa(i)].s[1] == i)#define For(i,n) for(int i=1;i<=n;i++)#define Rep(i,l,r) for(int i=l;i<=r;i++)#define Sets(a,b,c) {if(a) T[a].s[c] = b; if(b) fa(b) = a;}struct tnode{ int s[2],v,size,p; int mark,Min,rev;}T[N<<1];int n,m,root,tot,A[N],d;int read(){ int num = 0 , q = 1; char ch = getchar(); while(ch>‘9‘||ch<‘0‘) { if(ch==‘-‘) q = -1; ch = getchar(); } while(ch>=‘0‘&&ch<=‘9‘){ num = num * 10 + ch - ‘0‘; ch = getchar(); } return num * q;}void Update(int i){ T[i].size = T[L(i)].size + T[R(i)].size + 1; T[i].Min = min(T[L(i)].Min,T[R(i)].Min); T[i].Min = min(T[i].Min,T[i].v);}void Pushdown(int i){ int D = T[i].mark; if(T[i].mark){ if(L(i)) {T[L(i)].mark+=D; T[L(i)].Min+=D;T[L(i)].v+=D;} if(R(i)) {T[R(i)].mark+=D; T[R(i)].Min+=D;T[R(i)].v+=D;} T[i].mark = 0; } if(T[i].rev){ if(L(i)) T[L(i)].rev ^= 1; if(R(i)) T[R(i)].rev ^= 1; swap(L(i),R(i)); T[i].rev = 0; }}int Rank(int kth,int i){ Pushdown(i); if(T[L(i)].size + 1 == kth) return i; else if(T[L(i)].size >= kth) return Rank(kth,L(i)); else return Rank(kth - T[L(i)].size - 1 , R(i));}void Rot(int x){ int y = fa(x) , z = fa(y); int lx = Loc(x) , ly = Loc(y); Sets(y,T[x].s[!lx],lx); Sets(z,x,ly); Sets(x,y,!lx); Update(y);}void Splay(int i,int goal){ while(fa(i)!=goal){ if(fa(fa(i))!=goal) Rot(fa(i)); Rot(i); } Update(i); if(!goal) root = i;}void Build(int l,int r,int p,int &i){ if(l>r) return; int m = (l+r)>>1; T[i=++tot].p = p;T[i].v = A[m]; T[i].size = 1;T[i].Min = T[i].v; Build(l,m-1,i,L(i));Build(m+1,r,i,R(i)); Update(i);}char op[10];int x,y,D;int main(){ #ifndef ONLINE_JUDGE freopen("super.in","r",stdin); freopen("super.out","w",stdout); #endif n = read();T[0].Min = T[0].v = A[0] = A[n+1] = 2147483647; For(i,n) A[i] = read(); Build(0,n+1,0,root); T[Rank(n+2,root)].Min = 2147483647; m = read(); For(i,m){ scanf("%s",&op); if(op[0]==‘A‘){ x = read(); y = read(); D = read(); Splay(Rank(x,root),0); Splay(Rank(y+2,root),root); T[Key].v+=D;T[Key].Min+=D;T[Key].mark+=D; Update(R(root));Update(root); }else if(op[0]==‘M‘){ x = read(); y = read(); Splay(Rank(x,root),0); Splay(Rank(y+2,root),root); printf("%d\n",T[Key].Min); }else if(op[0]==‘I‘){ x = read(); D = read(); Splay(Rank(x+1,root),0); Splay(Rank(x+2,root),root); Key = ++tot; T[Key].p = R(root);T[Key].size = 1; T[Key].v = T[Key].Min = D; Update(R(root));Update(root); }else if(op[0]==‘D‘){ x = read(); Splay(Rank(x,root),0); Splay(Rank(x+2,root),root); T[Key].p = 0; Key = 0; Update(R(root));Update(root); }else if(op[3]==‘E‘){ x = read(); y = read(); Splay(Rank(x,root),0); Splay(Rank(y+2,root),root); T[Key].rev ^= 1; }else if(op[3]==‘O‘){ x = read(); y = read(); D = read(); while(D<0) D+=(y-x+1); D%=(y-x+1); Splay(Rank(y-D+1,root),0); Splay(Rank(y+2,root),root); int tkey = Key;Key = 0; Update(R(root));Update(root); Splay(Rank(x,root),0); Splay(Rank(x+1,root),root); Sets(R(root),tkey,0); Update(R(root));Update(root); } } return 0;}