首页 > 代码库 > hdu 1701 (Binary Tree Traversals)(二叉树前序中序推后序)
hdu 1701 (Binary Tree Traversals)(二叉树前序中序推后序)
Binary Tree Traversals
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64uDescription
A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.
In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.
In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.
In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.
Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.
In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.
In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.
In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.
Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.
Input
The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.
Output
For each test case print a single line specifying the corresponding postorder sequence.
Sample Input
91 2 4 7 3 5 8 9 64 7 2 1 8 5 9 3 6
Sample Output
7 4 2 8 9 5 6 3 1
不知道为什么往函数里串地址就运行不了,找了半天没找到错误!
这是错误的代码:
#include <stdio.h> #include <string.h> int n;int a[1000], b[1000], c[1000]; void build( int len, int s1, int s2, int s ) { int p; int i; if(len<=0) return; else { for(i=s2; i<s2+len; i++ ) { if(b[i]==a[s1]) { p = i; break; } } c[s+len-1] = a[s1]; build(p, s1+1, s2, s ); //左 build(len-p-1, s1+p+1, s2+p+1, s+p); //右 } } int main() { int i, j; while(scanf("%d", &n)!=EOF) { for(i=0; i<n; i++) { scanf("%d", &a[i] ); } for(i=0; i<n; i++) { scanf("%d", &b[i] ); } build(n, 0, 0, 0); for(i=0; i<n; i++) { printf("*%d ", c[i] ); } } return 0;}
这是正确的代码:
#include <stdio.h> #include <string.h> void build(int len, int *s1, int *s2, int *s) { int p; int i; if(len<=0) return; else { for(i=0; i<len; i++) { if(s2[i]==s1[0]) { p = i; } } build(p, s1+1, s2, s); build(len-p-1, s1+p+1, s2+p+1, s+p); s[len-1] = s1[0]; } } int main() { int i; int s1[1000], s2[1000], s3[1000]; int n; while(scanf("%d", &n)!=EOF) { for(i=0; i<n; i++) { scanf("%d", &s1[i] ); } for(i=0; i<n; i++) { scanf("%d", &s2[i] ); } build(n, s1, s2, s3 ); for(i=0; i<n; i++) { printf("%d%c", s3[i], i==n-1?‘\n‘:‘ ‘ ); } } return 0;}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。