首页 > 代码库 > xtu summer individual 1 E - Palindromic Numbers

xtu summer individual 1 E - Palindromic Numbers

E - Palindromic Numbers

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

 

Description

A palindromic number or numeral palindrome is a ‘symmetrical‘ number like 16461 that remains the same when its digits are reversed. In this problem you will be given two integers i j, you have to find the number of palindromic numbers between i and j (inclusive).

 

 

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing two integers i j (0 ≤ i, j ≤ 1017).

 

 

Output

For each case, print the case number and the total number of palindromic numbers between i and (inclusive).

 

 

Sample Input

4

1 10

100 1

1 1000

1 10000

 

 

Sample Output

Case 1: 9

Case 2: 18

Case 3: 108

Case 4: 198

 

解题:回文数字。分成两种类型判断,一种是长度为奇数个的,一种是长度为偶数个的。

 

举个栗子。。。

 

20 是长度为2的,偶数长度,只要枚举dp[1][2]+d[1]什么意思呢?d[1]就是长度为1 的回文数字有多少个!dp[1][2]表示以1开始,长度为2的回文数字的个数。

 

再说120.。枚举d[2],由于是奇数,最后是遇到只有一个数字的情况,这是只要枚举最中间这一位就可以了,把低位与高位设置成一致的,1x1,只有从0开始枚举x,只要还在120的范围内,每枚举一个就加一,一旦不在120的范围内立即跳出循环。

 

再说一个偶数的长度1234.。。d[3]+dp[0][2]+dp[1][2],把低位跟高位一致后,1221,判断这个数是不是在1234内,是就加一,不是就加0,好吧加0就是不加,你赢了!!!!!!

 

 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <vector> 6 #include <climits> 7 #include <algorithm> 8 #include <cmath> 9 #define LL long long10 #define INF 0x3f3f3f11 using namespace std;12 LL dp[200][1000],d[200];13 int len,bit[1000];14 void init() {15     int i,j;16     for(i = 0; i < 10; i++)17         dp[i][1] = dp[i][2] = 1;18     for(i = 3; i < 20; i++) {19         for(j = 0; j < 10; j++) {20             dp[j][i] = 10*dp[0][i-2];21         }22     }23     d[0] = 1;//以0开始的。。。0就是24     for(i = 1; i < 20; i++) {25         for(j = 1; j < 10; j++)26             d[i] += dp[j][i];27         d[i] += d[i-1];28     }//算出0-长度为i的所有回文数字数目29 }30 LL go(int e) {31     if(e < 0) return 1;32     LL sum = 0;33     for(int i = 0; i < 10; i++) {34         sum += dp[i][e];35     }36     return sum;37 }38 LL cal(LL n) {39     if(n < 10) return n+1;40     LL x = n,ans = 0,y = 0;41     int i,j,k,v,u;42     for(len = 0; x; x /= 10, len++)43         bit[len] = x%10;44     ans += d[len-1];45     for(j = 0,v = len>>1,i = len-1; i >= v; i--,j++) {46         if(i == len-1) {47             for(k = 1; k < bit[i]; k++)48                 ans += dp[k][len];49         } else if(i == j) {50             u = i;break;51         } else {52             for(k = 0; k < bit[i]; k++)53                 ans += dp[k][len-j*2];54         }55     }56     if(i == j) {//奇数个长度,最后结果受最中间的那位影响57         for(i = 0,j = len-1; i < j; i++,j--)58             bit[i] = bit[j];59         for(k = 0; k < 10; k++){60             bit[u] = k;61             for(y = i = 0; i < len; i++)62                 y = y*10+bit[i];63             if(y <= n) ans++;64             else break;65         }66     }else{//偶数个长度,最后结果受最后一位影响67         for(i = 0,j = len-1; i < j; i++,j--)68             bit[i] = bit[j];69         for(y = i = 0; i < len; i++)70             y = y*10+bit[i];71         if(y <= n) ans++;72     }73     return ans;74 }75 int main() {76     init();77     int t,ks = 1;78     LL a,b,c;79     scanf("%d",&t);80     while(t--){81         scanf("%lld %lld",&a,&b);82         if(a > b) swap(a,b);83         printf("Case %d: %lld\n",ks++,cal(b)-cal(a-1));84     }85     return 0;86 }
View Code