首页 > 代码库 > POJ 3041 Asteroids (图论-最小点覆盖)

POJ 3041 Asteroids (图论-最小点覆盖)

Asteroids
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 15079 Accepted: 8240

Description

Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N grid (1 <= N <= 500). The grid contains K asteroids (1 <= K <= 10,000), which are conveniently located at the lattice points of the grid. 

Fortunately, Bessie has a powerful weapon that can vaporize all the asteroids in any given row or column of the grid with a single shot.This weapon is quite expensive, so she wishes to use it sparingly.Given the location of all the asteroids in the field, find the minimum number of shots Bessie needs to fire to eliminate all of the asteroids.

Input

* Line 1: Two integers N and K, separated by a single space. 
* Lines 2..K+1: Each line contains two space-separated integers R and C (1 <= R, C <= N) denoting the row and column coordinates of an asteroid, respectively.

Output

* Line 1: The integer representing the minimum number of times Bessie must shoot.

Sample Input

3 4
1 1
1 3
2 2
3 2

Sample Output

2

Hint

INPUT DETAILS: 
The following diagram represents the data, where "X" is an asteroid and "." is empty space: 
X.X 
.X. 
.X.
 

OUTPUT DETAILS: 
Bessie may fire across row 1 to destroy the asteroids at (1,1) and (1,3), and then she may fire down column 2 to destroy the asteroids at (2,2) and (3,2).

Source

USACO 2005 November Gold

题目大意:

给你N*N的格子,有很多X,告诉你位置,你可以横向消除或者纵向消除一行,问你最小几次。


解题思路:

最小点覆盖,二部图可以解,将二部图构造成网络流求解。


解题代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;

const int INF=(1<<30);
const int maxn=1100,maxm=1100000;

struct edge{
    int u,v,f,next;
    edge(int u0=0,int v0=0,int f0=0){
        u=u0;v=v0;f=f0;
    }
}e[maxm];

int src,sink,cnt,head[maxn];

void adde(int u,int v,int f){
    e[cnt].u=u,e[cnt].v=v,e[cnt].f=f,e[cnt].next=head[u],head[u]=cnt++;
    e[cnt].u=v,e[cnt].v=u,e[cnt].f=0,e[cnt].next=head[v],head[v]=cnt++;
}

void init(){
    cnt=0;
    memset(head,-1,sizeof(head));
}

queue <int> q;
bool visited[maxn];
int dist[maxn];

void bfs(){
    memset(dist,0,sizeof(dist));
    while(!q.empty()) q.pop();
    visited[src]=true;
    q.push(src);
    while(!q.empty()){
        int s=q.front();
        q.pop();
        for(int i=head[s];i!=-1;i=e[i].next){
            int d=e[i].v;
            if(e[i].f>0 && !visited[d]){
                q.push(d);
                dist[d]=dist[s]+1;
                visited[d]=true;
            }
        }
    }
}

int dfs(int u,int delta){
    if(u==sink) return delta;
    else{
        int ret=0;
        for(int i=head[u];delta && i!=-1;i=e[i].next){
            if(e[i].f>0 && dist[e[i].v]==dist[u]+1){
                int d=dfs(e[i].v,min(e[i].f,delta));
                e[i].f-=d;
                e[i^1].f+=d;
                delta-=d;
                ret+=d;
            }
        }
        return ret;
    }
}

int maxflow(){
    int ret=0;
    while(true){
        memset(visited,false,sizeof(visited));
        bfs();
        if(!visited[sink]) return ret;
        ret+=dfs(src,INF);
    }
    return ret;
}

bool a[510][510];
int n,m;

void input(){
    init();
    src=http://www.mamicode.com/0;sink=2*n+1;>