首页 > 代码库 > 203-陈冠权-递归下降分析

203-陈冠权-递归下降分析

递归下降分析:

对于给定的文法G[E] :

E→E+T|E-T|T T→T*F| T/F|F F→(E)|i

消除左递归后的文法是: E→TE‘

E‘→+TE‘|-TE‘|∑

T→FT‘

T‘→*FT‘|/FT‘|∑

F→(E)|i

是否是LL(1)文法?

select(E→TE‘)=first(TE‘)={(,i} select(E‘→+TE‘)=first(+TE‘)={+} select(E‘→-TE‘)=first(-TE‘)={-} select(E‘→∑)=follow(E‘)={),#} select(T→FT‘)=first(FT‘)={(,i} select(T‘→*FT‘)=first(*FT‘)={*} select(T‘→/FT‘)=first(/FT‘)={/} select(T‘→∑)=follow(T‘)={+,-,),#) select(F→(E))=first((E))={(} select(F→i)=first(i)={i}

由上分析,得知此文法满足LL(1)文法

代码如下:

#include <stdio.h>
#include <string.h>
char prog[800], token[20];
char ch;
int syn,p,m,n,sum;
char * ch[6]= {"begin","if","then","while","do","end"};

main()
{
      p=0;
      printf("\n 请输入语句(以#结束):\n");
      do{
                 ch=getchar();
                 prog[p++]=ch;
      }while (ch!=#);
      p=0;
      do{
          scaner();
          switch(syn)
                  {
                     case 11: printf("\n(%d,%d)",syn,sum); break;
                     case -1: printf("\n(%s,)",token);break;
                     default: printf("\n(%d,%s)",syn, token);   
                  }
       }while (syn!=0);
    p=0;
    scaner();
     E();
     if (syn==0) 
              printf("\n 语法成功.\n");
     else     printf("\n  语法失败 \n");
}

scaner()
{
        for (n=0;n<20;n++) token[n]=NULL;        
        m=0;
        sum=0;
        ch=prog[p++];
        while (ch== ) {ch=prog[p++];}
        if (ch>=a&& ch<=z)
           {while (ch>=a&& ch<=z||ch>=0 && ch<=9)
                  {
                   token[m++]=ch;
                   ch=prog[p++];
                  }
          
            syn=10;p--;
            for (n=0;n<6;n++)
                if(strcmp(token,ch[n])==0) {syn=n+1;break;}                                               
           }
 else  
            if(ch>=0 && ch<=9)
            {while (ch>=0 && ch<=9) {sum=sum*10+(ch-0); ch=prog[p++];}
             syn=11;p--;
            }
          else 
                switch(ch)
                {
                    case <: 
                        token[m++]=ch;
                        ch=prog[p++];
                        if (ch==>) {syn=21;token[m++]=ch;}
                        else if (ch===) {syn=22;token[m++]=ch;}
                        else {syn=20;p--;}
                            break;
                      
                    case >: 
                        m=0; 
                        token[m++]=ch;
                        ch=prog[p++];
                        if (ch===){syn=24;token[m++]=ch;}
                        else {syn=23;p--;}
                        break;
                    case :: m=0; token[m++]=ch;
                                ch=prog[p++];
                                if (ch===){syn=18;token[m++]=ch;}
                                else {syn=17;p--;}
                                break;
                    case +: syn=13;token[0]=ch;break;
                    case -: syn=14;token[0]=ch;break;
                    case *: syn=15;token[0]=ch;break;
                    case /: syn=16;token[0]=ch;break;
                    case =: syn=25;token[0]=ch;break;                           
                    case ;: syn=26;token[0]=ch;break;
                    case (: syn=27;token[0]=ch;break;                                    
                    case ): syn=28;token[0]=ch;break; 
                    case #: syn=0; token[0]=ch;break;
                    default: syn=-1;token[0]=ch;
                }
}

E()
{printf("E ");
    T();
    E1();
    
}

E1()
{printf("E1 ");
    if (syn==13) {
        scaner();
        T();
        E1();
    }
    else {
        if (syn!=28 && syn!=0) error();
    }
} 

T()
{printf("T ");
    F();
    T1();
}

T1()
{printf("T1 ");
    if (syn==15) {
        scaner();
        F();
        T1();
    }
    else {
        if (syn!=28 && syn!=0 && syn!=13) error();
    }
}

F()
{printf("F ");
    if (syn==27) {
        scaner();
        E();
        if(syn==28) scaner();
        else error();
    }
    else if (syn==11 || syn==10) scaner();
    
}
error()
{
    printf("\n (%d,%s)语法错误! \n",syn, token);
}

 

203-陈冠权-递归下降分析