首页 > 代码库 > sqlite嵌入式数据库C语言基本操作(2)
sqlite嵌入式数据库C语言基本操作(2)
事实上对于操作sqlite的其他语言,写一个统一的数据库操作模型是非常容易的,比如java,c#,这些语言支持垃圾回收,支持异常捕获,支持泛型,写起来就很容易。但是对于C语言,就得另当别论了,就拿查询操作来说,c语言没有泛型,不能返回统一的泛型列表,只能返回数据模型的链表结构。
但是得益于前面讲过的通用链表)结构,我们可以尽可能的像其他语言一样封装一个通用的数据库操作模型。
回顾前面讲到的sqlite操作基本流程,查询流程是
1.打开数据库
2.准备好SQL语句。
3.绑定SQL语句参数
4.执行SQL语句
5.返回结果集,执行串链操作。
6.释放资源
7.关闭数据库句柄.
整体的流程不变,把不一样的部分抽象出来 —— 绑定参数,执行串链的过程抽象出来。
绑定参数,如
int bind_userinfo_t(sqlite3_stmt * stmt,int index, void * arg )
执行查询建链过程,如
int create_userinfo_T(sqlite3_stmt,void * arg)
然后在通用的数据库操作函数中传入函数指针,尽量的精简代码。
下面是的dbhelper.h 和 dbhelper.c 抽象的一般数据库操作函数。
#ifndef _DBHELPER_H_#define _DBHELPER_H_#include <sqlite3.h> #define DB_SQL_MAX_LEN 1024//执行没有返回的SQL语句int db_nonquery_operator(const char *sqlstr,int (*bind)(sqlite3_stmt *,int index,void * arg),void *param);//执行没有返回的SQL语句的多值传参int db_nonquery_by_varpara(const char *sql,const char *fmt,...);//执行没有返回的SQL语句int db_nonquery_transaction(int (*exec_sqls)(sqlite3 *db,void * arg),void *arg);//执行多值传参的查询语句int db_query_by_varpara(const char *sql,int (*create)(sqlite3_stmt *stmt,void *arg),void *arg,const char *fmt,...);//执行查询并返回查询结果集的条数int db_query_count_result(const char *sql);//对sqlite3_column_blob的二次封装int db_stmt_get_blob(sqlite3_stmt *stmt,int index,unsigned char *out);//对sqlite3_column_text的二次封装int db_stmt_get_text(sqlite3_stmt *stmt,int index,char *out);//对sqlite3_column_int的二次封装int db_stmt_get_int(sqlite3_stmt *stmt,int index);//对sqlite3_column_double的二次封装double db_stmt_get_double(sqlite3_stmt *stmt,int index);#endif
dbhelper.c:
#include <stdio.h>#include <string.h>#include <pthread.h>#include "na_queue.h"#include "dbhelper.h"#define DB_NAME "test.db"static pthread_mutex_t db_mutex_lock = PTHREAD_MUTEX_INITIALIZER;static int db_bind_by_var(sqlite3_stmt *stmt,const char *fmt,va_list args){ int len,npara=1; int ret = SQLITE_OK; if(fmt == NULL){ return ret; } for(;*fmt;++fmt){ if(*fmt != ‘%‘) continue; ++fmt; //get length len = 0; while(isdigit(*fmt)){ len = len * 10 + (*fmt - ‘0‘); ++fmt; } switch(*fmt){ case ‘d‘: ret = sqlite3_bind_int(stmt,npara,va_arg(args,int)); break; case ‘s‘: { char *str = va_arg(args,char *); ret = sqlite3_bind_text(stmt,npara,str,strlen(str),NULL); } break; case ‘x‘: { unsigned char *pdata; pdata = http://www.mamicode.com/va_arg(args,char *); ret = sqlite3_bind_blob(stmt,npara,pdata,len,NULL); // printf_phex("blob",pdata,len); } break; default: ret = SQLITE_ERROR; break; } ++npara; if(ret) return ret; } return ret;}/* * === FUNCTION ====================================================================== * Name: db_query_by_varpara * Description: 数据库查询操作,可以带变参绑定 * @sql : sql * @create : 取得数据并创建节点 * @arg : 用户用于create的参数 * @fmt : 格式字符串,%s string,%d int,%nx 长度为N的二进制串 * ... : 变参 * Return : 查询到数据的条数 * ===================================================================================== */int db_query_by_varpara(const char *sql,int (*create)(sqlite3_stmt *stmt,void *arg),void *arg,const char *fmt,...){ sqlite3 *db = NULL; sqlite3_stmt *stmt = NULL; if(sql == NULL){// return SQLITE_ERROR; return 0; } pthread_mutex_lock(&db_mutex_lock); int rc = sqlite3_open(DB_NAME,&db); if(rc != SQLITE_OK){ printf("open database failed,rc=%d",rc); pthread_mutex_unlock(&db_mutex_lock); return 0; } rc = sqlite3_prepare(db,sql,-1,&stmt,NULL); if(rc != SQLITE_OK){ printf("database prepare fail,rc=%d",rc); goto DB_EXEC_FAIL; } if(fmt){ va_list args; va_start(args,fmt); rc = db_bind_by_var(stmt,fmt,args); va_end(args); if(rc){ printf("database bind fail,rc=%d",rc); goto DB_EXEC_FAIL; } } if(create){ rc = (*create)(stmt,arg); }else{ rc = (sqlite3_step(stmt),0); } sqlite3_finalize(stmt); goto DB_EXEC_OK;DB_EXEC_FAIL: printf("db operator failed,rc=%d",rc); rc = 0;DB_EXEC_OK: sqlite3_close(db); pthread_mutex_unlock(&db_mutex_lock); return rc;}/* * === FUNCTION ====================================================================== * Name: db_exec_noquery * Description: 执行非查询操作 * @sqlstr : sql,多条语句由‘;‘分开 * @bind : 绑定sql中的未知变量操作 * @param : 绑定中的参数 * @bind.index: sql语句序号 * Return : 0 or error * ===================================================================================== */int db_nonquery_operator(const char *sqlstr,int (*bind)(sqlite3_stmt *,int index,void * arg),void *param){ sqlite3 *db = NULL; sqlite3_stmt *stmt = NULL;// char *emsg = NULL; if(sqlstr == NULL){ return SQLITE_ERROR; } pthread_mutex_lock(&db_mutex_lock); int rc = sqlite3_open(DB_NAME,&db); if(rc != SQLITE_OK){ printf("open database failed,rc=%d",rc); pthread_mutex_unlock(&db_mutex_lock); return rc; } rc = sqlite3_exec(db,"begin transaction",0,0,NULL); if(rc != SQLITE_OK){ printf("begin transaction:ret=%d",rc); goto DB_BEGIN_FAIL; } char sql[DB_SQL_MAX_LEN]; int index = 0,offset=0,n=0; while(sqlstr[index] != 0){ offset = 0; do{ if(offset >= DB_SQL_MAX_LEN){ printf("sql is too long,(%d)",offset); rc = SQLITE_ERROR; goto DB_EXEC_FAIL; } if((sqlstr[index] != ‘;‘) && (sqlstr[index] != 0)){ sql[offset++] = sqlstr[index++]; }else{ sql[offset] = ‘\0‘; if(sqlstr[index] == ‘;‘) index++; n++; break; } }while(1); printf("sql:%s",sql); rc = sqlite3_prepare(db,sql,-1,&stmt,NULL); if(rc != SQLITE_OK){ printf("prepare,error,%d",rc); goto DB_EXEC_FAIL; } if(bind){ rc = (*bind)(stmt,n,param); }else{ rc = sqlite3_step(stmt); } sqlite3_finalize(stmt); if((rc != SQLITE_OK) && (rc != SQLITE_DONE)){ printf("bind"); goto DB_EXEC_FAIL; } } rc = sqlite3_exec(db,"commit transaction",0,0,NULL); if(rc){ printf("commit transaction:%d",rc); goto DB_EXEC_FAIL; } goto DB_EXEC_OK;DB_EXEC_FAIL: if(sqlite3_exec(db,"rollback transaction",0,0,NULL)){ printf("rollback transaction error"); }DB_BEGIN_FAIL:// sqlite3_free(emsg); printf("db operator failed,rc=%d",rc);DB_EXEC_OK: sqlite3_close(db); pthread_mutex_unlock(&db_mutex_lock); return rc;}int db_nonquery_by_varpara(const char *sql,const char *fmt,...){ sqlite3 *db = NULL; sqlite3_stmt *stmt = NULL; if(sql == NULL){ return SQLITE_ERROR; } pthread_mutex_lock(&db_mutex_lock); int rc = sqlite3_open(DB_NAME,&db); if(rc != SQLITE_OK){ printf("open database failed,rc=%d",rc); pthread_mutex_unlock(&db_mutex_lock); return rc; } printf("sql:%s",sql); rc = sqlite3_prepare(db,sql,-1,&stmt,NULL); if(rc != SQLITE_OK){ printf("prepare,"); goto DB_EXEC_FAIL; } if(fmt){ va_list args; va_start(args,fmt); rc = db_bind_by_var(stmt,fmt,args); va_end(args); if(rc){ goto DB_EXEC_FAIL; } } rc = sqlite3_step(stmt); sqlite3_finalize(stmt); if((rc != SQLITE_OK) && (rc != SQLITE_DONE)){ printf("bind"); goto DB_EXEC_FAIL; } rc = 0; goto DB_EXEC_OK;DB_EXEC_FAIL:DB_BEGIN_FAIL: printf("db operator failed,rc=%d",rc);DB_EXEC_OK: sqlite3_close(db); pthread_mutex_unlock(&db_mutex_lock); return rc;}int db_nonquery_transaction(int (*exec_sqls)(sqlite3 *db,void * arg),void *arg){ sqlite3 *db = NULL; sqlite3_stmt *stmt = NULL;// char *emsg = NULL; pthread_mutex_lock(&db_mutex_lock); int rc = sqlite3_open(DB_NAME,&db); if(rc != SQLITE_OK){ printf("open database failed,rc=%d",rc); pthread_mutex_unlock(&db_mutex_lock); return rc; } rc = sqlite3_exec(db,"begin transaction",0,0,NULL); if(rc != SQLITE_OK){ printf("begin transaction:%d",rc); goto DB_BEGIN_FAIL; } if(exec_sqls){ rc = (*exec_sqls)(db,arg); }else{ rc = SQLITE_ERROR; } if((rc != SQLITE_OK) && (rc != SQLITE_DONE)){ printf("prepare,error,%d",rc); goto DB_EXEC_FAIL; } rc = sqlite3_exec(db,"commit transaction",0,0,NULL); if(rc){ printf("commit transaction:%d",rc); goto DB_EXEC_FAIL; } goto DB_EXEC_OK;DB_EXEC_FAIL: if(sqlite3_exec(db,"rollback transaction",0,0,NULL)){ printf("rollback transaction:error"); }DB_BEGIN_FAIL:// sqlite3_free(emsg); printf("db operator failed,rc=%d",rc);DB_EXEC_OK: sqlite3_close(db); pthread_mutex_unlock(&db_mutex_lock); return rc;}static int db_get_count(sqlite3_stmt *stmt,void *arg){ int ret,*count=arg; ret = sqlite3_step(stmt); if(ret != SQLITE_ROW) return SQLITE_EMPTY; *count = db_stmt_get_int(stmt,0); return SQLITE_OK;}/* * === FUNCTION ====================================================================== * Name: db_query_count_result * Description: 查询计数结果的第一列第一行,其它忽略 * @sql : 查询计数的SQL语句 * Return : 查询到计数返回计数,否则一律返回0 * ===================================================================================== */int db_query_count_result(const char *sql){ int ret,count=0; ret = db_query_by_varpara(sql,db_get_count,&count,NULL); if(ret == SQLITE_OK) return count; return 0;}int db_stmt_get_blob(sqlite3_stmt *stmt,int index,unsigned char *out){ const char *pdata = http://www.mamicode.com/sqlite3_column_blob(stmt,index);"hljs-keyword">int
len = sqlite3_column_bytes(stmt,index); if(pdata){ memcpy(out,pdata,len); return len; } return 0;}int db_stmt_get_text(sqlite3_stmt *stmt,int index,char *out){ const unsigned char *pdata = http://www.mamicode.com/sqlite3_column_text(stmt,index);"hljs-keyword">if(pdata){ int len = strlen(pdata); strncpy(out,pdata,len); return len; } return 0;}int db_stmt_get_int(sqlite3_stmt *stmt,int index){ return sqlite3_column_int(stmt,index);}double db_stmt_get_double(sqlite3_stmt *stmt,int index){ return sqlite3_column_double(stmt,index);}对以上的代码做一下说明:
test.db为数据库文件
为了处理多线程,在对数据库进行操作的时候加了锁。
现在按照通用数据库操作方式重写上次的代码,查询和增加操作。
首先重写数据模型:
typedef struct userinfo_s{ int userid; char username[32]; na_queue_t queue;}userinfo_t;
释放函数链表函数:
void free_userinfo_t(na_queue_t *h){ na_queue_t *head = h,*pos,*n; userinfo_t *p = NULL; na_queue_for_each_safe(pos,n,head){ p = na_queue_data(pos,userinfo_t,queue); free(p); } na_queue_init(head); }
绑定函数,用于绑定insert的插入函数
int bind_userinfo_t(sqlite3_stmt * stmt,int index,void * arg){ int rc; userinfo_t * param = arg; sqlite3_bind_int(stmt,1,param->userid); sqlite3_bind_text(stmt,2,param->username,strlen(param->username),NULL); rc = sqlite3_step(stmt); if (rc != SQLITE_DONE) return rc; return SQLITE_OK;}
查询操作需要的串链函数:
int create_userinfo_t(sqlite3_stmt * stmt,void * arg){ na_queue_t * h = arg; na_queue_init(h); userinfo_t * u; int ret,count = 0; ret = sqlite3_step(stmt); if(ret != SQLITE_ROW){ return 0; } do { u = calloc(sizeof(userinfo_t),1); if(!u){ goto CREATE_USERINFO_FAIL; } u->userid = db_stmt_get_int(stmt,0); db_stmt_get_text(stmt,1,u->username); na_queue_insert_tail(h,&(u->queue)); count ++; } while ((ret = sqlite3_step(stmt)) == SQLITE_ROW); return count;CREATE_USERINFO_FAIL: free_userinfo_t(h); return 0;}
基本的对数据表的操作就是按照这种方式来抽象代码,现在我们来按照这种方式来写一段测试代码:
//打印用户信息void printusers(na_queue_t *h){ userinfo_t * q=NULL; na_queue_foreach(q,h,userinfo_t,queue){ printf("userid:%d username:%s\n",q->userid,q->username); }}//得到所以用户信息int get_all_userinfo(na_queue_t * h){ return db_query_by_varpara("select * from userinfo;",create_userinfo_t,h,NULL);}//添加一个用户信息int add_a_userinfo(userinfo_t * u){ return db_nonquery_operator("insert into userinfo(userid,username) values (?,?)",bind_userinfo_t,u);}int main(int argc, char *argv[]){ printf("test get all userinfo\n"); na_queue_t h; int ret = get_all_userinfo(&h); printusers(&h); free_userinfo_t(&h); printf("test add userinfo"); userinfo_t newuser; newuser.userid = 7; strncpy(newuser.username,"White",10); add_a_userinfo(&newuser); get_all_userinfo(&h); printusers(&h); free_userinfo_t(&h); return 0;}
我们还是上一次的数据库来接着运行,输出:
test get all userinfo
userid:1 username:Alex
userid:2 username:Neo
userid:3 username:Allan
userid:4 username:coby
userid:5 username:micheal
test add userinfo
userid:1 username:Alex
userid:2 username:Neo
userid:3 username:Allan
userid:4 username:coby
userid:5 username:micheal
userid:7 username:White
以上就是一个简单的C语言对SQLITE数据库操作的封装,事实上我们已经把它用在了我们的生产环境,不过生产环境版本相对于这个版本要复杂一点,加入的日志模块,线程模块,而且现在还在继续进化中,但是原理就是这样了,实现上大同小异而已。实例也同样只是写了查询和插入,至于其他操作就有读者自己在这个实例上去添加了。SQLITE小型数据库相对与其他Oracle等其他大型数据库而言,他对SQL的支持没有他们强大,但是对于小型嵌入式系统已经足够了,他们之间的差异只有改天再补充了。今天就到这了。
generated by haroopad
sqlite嵌入式数据库C语言基本操作(2)