首页 > 代码库 > 【DataStructure】Another usage of List: Polynomial
【DataStructure】Another usage of List: Polynomial
Statements: This blog was written by me, but most of content is quoted from book【Data Structure with Java Hubbard】
【Description】
Apolynomialis a mathematical function of the form:
p(x) = a0xn+ a1xn–1+a2xn–2+ ???+an–1x + an The greatest exponent, n, is called the degreeof the polynomial. For example, p(x) = 7x4– 2 is abpolynomial of degree 4. The simplest polynomials are constant polynomialssuch as p(x) = 6 (degree 0) and linear polynomialssuch as p(x) = 9x+ 6 (degree 1). The unique zero polynomial p(x) = 0 is defined to have degree –1. In this section we present a Polynomialclass whose instances represent mathematical polynomials and which supports the usual algebraic operations on polynomials.A polynomial can be regarded as a sum of distinct terms. A termis a mathematical function of the form t(x) = cxe, where cis any real number and eis any nonnegative integer. The number ciscalled the coefficient, and the number eis called the exponent.To define a class whose objects represent polynomials, we use a linked list of Termobjects.For example, the polynomial p(x) = 3x2–2x+ 5 could be represented as a list of three elements,where the first element represents the term 3x2, the second element represents the term – 2x, andthe third element represents the (constant) term 5.
【Implement】
package com.albertshao.ds.polynomial; // Data Structures with Java, Second Edition // by John R. Hubbard // Copyright 2007 by McGraw-Hill import java.util.*; public class Polynomial { private List<Term> list = new LinkedList<Term>(); public static final Polynomial ZERO = new Polynomial(); private Polynomial() { } public Polynomial(double coef, int exp) { if (coef != 0.0) { list.add(new Term(coef, exp)); } } public Polynomial(double... a) { for (int i=0; i<a.length; i++) { if (a[i] != 0.0) { list.add(new Term(a[i], i)); } } } public Polynomial(Polynomial p) { // copy constructor for (Term term : p.list) { this.list.add(new Term(term)); } } public int degree() { if (list.isEmpty()) { return -1; } else { return list.get(list.size()-1).exp; } } public boolean isZero() { return list.isEmpty(); } public Polynomial plus(Polynomial p) { if (this.isZero()) { return new Polynomial(p); } if (p.isZero()) { return new Polynomial(this); } Polynomial q = new Polynomial(); ListIterator<Term> it = list.listIterator(); ListIterator<Term> itp = p.list.listIterator(); while (it.hasNext() && itp.hasNext()) { Term term = it.next(); Term pTerm = itp.next(); if (term.exp < pTerm.exp) { q.list.add(new Term(term)); itp.previous(); } else if (term.exp == pTerm.exp) { q.list.add(new Term(term.coef + pTerm.coef, term.exp)); } else { // (term.exp > pTerm.exp) q.list.add(new Term(pTerm)); it.previous(); } } while (it.hasNext()) { q.list.add(new Term(it.next())); } while (itp.hasNext()) { q.list.add(new Term(itp.next())); } return q; } public String toString() { if (this.isZero()) { return "0"; } Iterator<Term> it = list.iterator(); StringBuilder buf = new StringBuilder(); boolean isFirstTerm = true; while (it.hasNext()) { Term term = it.next(); double c = term.coef; int e = term.exp; if (isFirstTerm) { buf.append(String.format("%.2f", c)); isFirstTerm = false; } else { if (term.coef < 0) { buf.append(String.format(" - %.2f", -c)); } else { buf.append(String.format(" + %.2f", c)); } } if (e == 1) { buf.append("x"); } else if (e > 1) { buf.append("x^" + e); } } return buf.toString(); } private class Term { private double coef; private int exp; public Term(double coef, int exp) { if (coef == 0.0 || exp < 0) { throw new IllegalArgumentException(); } this.coef = coef; this.exp = exp; } public Term(Term that) { // copy constructor this(that.coef, that.exp); } } }// Data Structures with Java, Second Edition // by John R. Hubbard // Copyright 2007 by McGraw-Hill package com.albertshao.ds.polynomial; public class TestPolynomial { public static void main(String[] args) { Polynomial p = new Polynomial(3, -8, 0, 0, 2, 1); Polynomial q = new Polynomial(0, 5, 6, 9); System.out.println("p: " + p); System.out.println("p.degree(): " + p.degree()); System.out.println("q: " + q); System.out.println("q.degree(): " + q.degree()); System.out.println("p.plus(q): " + p.plus(q)); System.out.println("q.plus(p): " + q.plus(p)); System.out.println("p.plus(q).degree(): " + p.plus(q).degree()); Polynomial z = new Polynomial(0); System.out.println("z: " + z); System.out.println("z.degree(): " + z.degree()); System.out.println("p.plus(z): " + p.plus(z)); System.out.println("z.plus(p): " + z.plus(p)); System.out.println("p: " + p); Polynomial t = new Polynomial(8.88, 44); System.out.println("t: " + t); System.out.println("t.degree(): " + t.degree()); } }【Result】
p: 3.00 - 8.00x + 2.00x^4 + 1.00x^5 p.degree(): 5 q: 5.00x + 6.00x^2 + 9.00x^3 q.degree(): 3 p.plus(q): 3.00 - 3.00x + 6.00x^2 + 9.00x^3 + 2.00x^4 + 1.00x^5 q.plus(p): 3.00 - 3.00x + 6.00x^2 + 9.00x^3 + 2.00x^4 + 1.00x^5 p.plus(q).degree(): 5 z: 0 z.degree(): -1 p.plus(z): 3.00 - 8.00x + 2.00x^4 + 1.00x^5 z.plus(p): 3.00 - 8.00x + 2.00x^4 + 1.00x^5 p: 3.00 - 8.00x + 2.00x^4 + 1.00x^5 t: 8.88x^44 t.degree(): 44