首页 > 代码库 > 【HackerRank】Find the Median(Partition找到数组中位数)

【HackerRank】Find the Median(Partition找到数组中位数)

In the Quicksort challenges, you sorted an entire array. Sometimes, you just need specific information about a list of numbers, and doing a full sort would be unnecessary. Can you figure out a way to use your partition code to find the median in an array?

Challenge 
Given a list of numbers, can you find the median?

Input Format 
There will be two lines of input:

  • n - the size of the array
  • ar - n numbers that makes up the array

Output Format 
Output one integer, the median.

Constraints 
1<= n <= 1000001 
-10000 <= x <= 10000 , x ∈ ar 
There will be an odd number of elements.


 

题解:久闻Partition函数可以用来找到乱序数组的中位数,今天终于实现了一把。

设置一个变量need为数组长度的一半,另一个变量hasFound为当前比找到的比中位数小的数的个数,当hasFound=need的时候,我们就找到了中位数。

在每次Partition后,看比pivot小的那部分数组有多少个元素,如果hasFound加上这部分元素正好等于need,那么pivot就是所求的中位数。如果hasFound加上这部分元素大于need,说明比pivot小的这部分数组需要继续划分,递归的调用Partition;如果hasFound加上这部分元素小于need,那么就把这部分元素个数加到hasFound上,并且继续划分比pivot大的那部分数组。

例如数组:3 1 4 5 2,找中位数的过程如下图所示:

代码如下:

 1 import java.util.*; 2  3 public class Solution { 4     private static int need = 0; 5     private static int hasFound = 0; 6      7     private static void swap(int[] ar,int i,int j){ 8         int temp = ar[i]; 9         ar[i]= ar[j];10         ar[j]=temp;11     }12     private static int Partition(int[] ar,int start,int end){13         int pivot = ar[end];14         int i = start;15         int j = start;16         while(i < end){17             if(ar[i] >= pivot)18                 i++;19             else if(ar[i] < pivot){20                 swap(ar,i,j);21                 i++;22                 j++;23             }24         }25         swap(ar, j, end);26         if(hasFound+j-start+1==need)27             return pivot;28         else if(hasFound+j-start+1<need){29             hasFound += j-start+1;30             return Partition(ar, j+1, end);31         }32         else {33             return Partition(ar, start, j-1);34         }35         36     }37     38     public static void main(String[] args) {39         Scanner in = new Scanner(System.in);40         int n = in.nextInt();41         need = n%2==0?n/2:n/2+1;42         int[] ar = new int[n];43         44         for(int i = 0;i < n;i ++)45             ar[i] = in.nextInt();46         System.out.println(Partition(ar, 0, n-1));47         48     }49 }

以上代码就很容易扩展到找寻数组中第k小的数了,只要改变need变量的值即可。