首页 > 代码库 > Run Test Case on Spark
Run Test Case on Spark
今天有哥们问到如何对Spark进行单元测试。现在将Sbt的测试方法写出来,如下:
对Spark的test case进行测试的时候可以用sbt的test命令:
一、测试全部test case
sbt/sbt test
二、测试单个test case
sbt/sbt "test-only *DriverSuite*"
下面举个例子:
这个Test Case是位于$SPARK_HOME/core/src/test/scala/org/apache/spark/DriverSuite.scala
FunSuit是scalatest里面的测试Suit,要继承它。这里主要是一个回归测试,测试Spark程序正常结束后,Driver会不会正常退出。
注:我就拿这个例子模拟一下,测试成功和测试失败的情景,这个例子和DriverSuite的测试目的完全不一致,只是演示作用。 :)
下面是正常运行退出的例子:
package org.apache.spark import java.io.File import org.apache.log4j.Logger import org.apache.log4j.Level import org.scalatest.FunSuite import org.scalatest.concurrent.Timeouts import org.scalatest.prop.TableDrivenPropertyChecks._ import org.scalatest.time.SpanSugar._ import org.apache.spark.util.Utils import scala.language.postfixOps class DriverSuite extends FunSuite with Timeouts { test("driver should exit after finishing") { val sparkHome = sys.env.get("SPARK_HOME").orElse(sys.props.get("spark.home")).get // Regression test for SPARK-530: "Spark driver process doesn't exit after finishing" val masters = Table(("master"), ("local"), ("local-cluster[2,1,512]")) forAll(masters) { (master: String) => failAfter(60 seconds) { Utils.executeAndGetOutput( Seq("./bin/spark-class", "org.apache.spark.DriverWithoutCleanup", master), new File(sparkHome), Map("SPARK_TESTING" -> "1", "SPARK_HOME" -> sparkHome)) } } } } /** * Program that creates a Spark driver but doesn't call SparkContext.stop() or * Sys.exit() after finishing. */ object DriverWithoutCleanup { def main(args: Array[String]) { Logger.getRootLogger().setLevel(Level.WARN) val sc = new SparkContext(args(0), "DriverWithoutCleanup") sc.parallelize(1 to 100, 4).count() } }
executeAndGetOutput方法接受一个command命令,调用spark-class来运行DriverWithoutCleanup类。
/** * Execute a command and get its output, throwing an exception if it yields a code other than 0. */ def executeAndGetOutput(command: Seq[String], workingDir: File = new File("."), extraEnvironment: Map[String, String] = Map.empty): String = { val builder = new ProcessBuilder(command: _*) .directory(workingDir) val environment = builder.environment() for ((key, value) <- extraEnvironment) { environment.put(key, value) } val process = builder.start() //启动一个进程来运行spark job new Thread("read stderr for " + command(0)) { override def run() { for (line <- Source.fromInputStream(process.getErrorStream).getLines) { System.err.println(line) } } }.start() val output = new StringBuffer val stdoutThread = new Thread("read stdout for " + command(0)) { //读取spark job的输出 override def run() { for (line <- Source.fromInputStream(process.getInputStream).getLines) { output.append(line) } } } stdoutThread.start() val exitCode = process.waitFor() stdoutThread.join() // Wait for it to finish reading output if (exitCode != 0) { throw new SparkException("Process " + command + " exited with code " + exitCode) } output.toString //返回spark job的输出 }
运行第二个命令可以看到运行结果:
sbt/sbt "test-only *DriverSuite*"
执行结果:[info] Compiling 1 Scala source to /app/hadoop/spark-1.0.1/core/target/scala-2.10/test-classes... [info] DriverSuite: //执行DriverSuit这个TestSuit Spark assembly has been built with Hive, including Datanucleus jars on classpath SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/lib_managed/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/assembly/target/scala-2.10/spark-assembly-1.0.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 14/08/14 18:20:15 WARN spark.SparkConf: SPARK_CLASSPATH was detected (set to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*'). This is deprecated in Spark 1.0+. Please instead use: - ./spark-submit with --driver-class-path to augment the driver classpath - spark.executor.extraClassPath to augment the executor classpath 14/08/14 18:20:15 WARN spark.SparkConf: Setting 'spark.executor.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around. 14/08/14 18:20:15 WARN spark.SparkConf: Setting 'spark.driver.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around. Spark assembly has been built with Hive, including Datanucleus jars on classpath SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/lib_managed/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/assembly/target/scala-2.10/spark-assembly-1.0.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 14/08/14 18:20:19 WARN spark.SparkConf: SPARK_CLASSPATH was detected (set to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*'). This is deprecated in Spark 1.0+. Please instead use: - ./spark-submit with --driver-class-path to augment the driver classpath - spark.executor.extraClassPath to augment the executor classpath 14/08/14 18:20:19 WARN spark.SparkConf: Setting 'spark.executor.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around. 14/08/14 18:20:19 WARN spark.SparkConf: Setting 'spark.driver.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around. Spark assembly has been built with Hive, including Datanucleus jars on classpath Spark assembly has been built with Hive, including Datanucleus jars on classpath [info] - driver should exit after finishing [info] ScalaTest [info] Run completed in 12 seconds, 586 milliseconds. [info] Total number of tests run: 1 [info] Suites: completed 1, aborted 0 [info] Tests: succeeded 1, failed 0, canceled 0, ignored 0, pending 0 [info] All tests passed. [info] Passed: Total 1, Failed 0, Errors 0, Passed 1 [success] Total time: 76 s, completed Aug 14, 2014 6:20:26 PM
测试通过, Total 1, Failed 0, Errors 0, Passed 1。
这里如果我们稍微将test case 改改,让spark job抛异常,那么这个,这样test case 就会failed掉,如下:
object DriverWithoutCleanup { def main(args: Array[String]) { Logger.getRootLogger().setLevel(Level.WARN) val sc = new SparkContext(args(0), "DriverWithoutCleanup") sc.parallelize(1 to 100, 4).count() throw new RuntimeException("OopsOutOfMemory, haha, not real OOM, don't worry!") //添加此行 }
那么,再次运行测试:
会发现错误
[info] DriverSuite: Spark assembly has been built with Hive, including Datanucleus jars on classpath SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/lib_managed/jars/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/app/hadoop/spark-1.0.1/assembly/target/scala-2.10/spark-assembly-1.0.1-hadoop0.20.2-cdh3u5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 14/08/14 18:40:07 WARN spark.SparkConf: SPARK_CLASSPATH was detected (set to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*'). This is deprecated in Spark 1.0+. Please instead use: - ./spark-submit with --driver-class-path to augment the driver classpath - spark.executor.extraClassPath to augment the executor classpath 14/08/14 18:40:07 WARN spark.SparkConf: Setting 'spark.executor.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around. 14/08/14 18:40:07 WARN spark.SparkConf: Setting 'spark.driver.extraClassPath' to '/home/hadoop/src/hadoop/lib/:/app/hadoop/sparklib/*:/app/hadoop/spark-1.0.1/lib_managed/jars/*' as a work-around. Exception in thread "main" java.lang.RuntimeException: OopsOutOfMemory, haha, not real OOM, don't worry! //自定义抛异常使spark job运行失败,打印出了异常堆栈,测试用例失败 at org.apache.spark.DriverWithoutCleanup$.main(DriverSuite.scala:60) at org.apache.spark.DriverWithoutCleanup.main(DriverSuite.scala) [info] - driver should exit after finishing *** FAILED *** [info] SparkException was thrown during property evaluation. (DriverSuite.scala:40) [info] Message: Process List(./bin/spark-class, org.apache.spark.DriverWithoutCleanup, local) exited with code 1 [info] Occurred at table row 0 (zero based, not counting headings), which had values ( [info] master = local [info] ) [info] ScalaTest [info] Run completed in 4 seconds, 765 milliseconds. [info] Total number of tests run: 1 [info] Suites: completed 1, aborted 0 [info] Tests: succeeded 0, failed 1, canceled 0, ignored 0, pending 0 [info] *** 1 TEST FAILED *** [error] Failed: Total 1, Failed 1, Errors 0, Passed 0 [error] Failed tests: [error] org.apache.spark.DriverSuite [error] (core/test:testOnly) sbt.TestsFailedException: Tests unsuccessful [error] Total time: 14 s, completed Aug 14, 2014 6:40:10 PM可以看到TEST FAILED。
三、 总结:
本文主要讲解了,如何运行spark的测试用例,运行全部test case,和运行单个test case的命令,并通过一个例子讲解其运行正常和失败的详细情景,具体细节还需要继续摸索。如果想做contributor,这一关必须过了。
——EOF——
原创文章,转载请注明,出自http://blog.csdn.net/oopsoom/article/details/38555173
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。