首页 > 代码库 > hdu 4602 Partition (概率方法)

hdu 4602 Partition (概率方法)

Partition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2472    Accepted Submission(s): 978


Problem Description
Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have
  4=1+1+1+1
  4=1+1+2
  4=1+2+1
  4=2+1+1
  4=1+3
  4=2+2
  4=3+1
  4=4
totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
 

Input
The first line contains a single integer T(1≤T≤10000), indicating the number of test cases.
Each test case contains two integers n and k(1≤n,k≤109).
 

Output
Output the required answer modulo 109+7 for each test case, one per line.
 

Sample Input
2 4 2 5 5
 

Sample Output
5 1


对于1 <= k < n,我们可以等效为n个点排成一列,并取出其中的连续k个,这连续的看K个两端断开;

1、若取得是这K个点包括端点(我们只考虑一个端点的情况),还剩下(n-k-1)个间隔,

每个间隔有断开和闭合两种状态,故有2^(n-k-1),最后乘以2;

2、若取得是这K个点不包括端点,这连续的K个点有(n-k-1)种取法,还剩下(n-k-2)个间隔,

故有2^(n-k-2)*(n-k-1);

总计2 ? 2^(n – k ? 1) + 2^(n – k ? 2) ? (n – k ? 1) = (n – k + 3) * 2^(n – k ? 2)。 


#include"stdio.h"
#include"string.h"
#include"queue"
#include"vector"
#include"algorithm"
using namespace std;
#define LL __int64
const int mod=1000000007;
int main()
{
    int T,i,n,k;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&k);
        if(n<k)
            printf("0\n");
        else if(n==k)
            printf("1\n");
        else
        {
            LL d=n-k,s1,t;
            if(d==1) printf("2\n");
            else
            {
                s1=d+3;
                d-=2;
                LL aa=2,tmp=1;
                while(d)
                {
                    if(d&1)
                        tmp*=aa;
                    d/=2;
                    aa=(aa*aa)%mod;
                    tmp%=mod;
                }
                printf("%I64d\n",(tmp*s1)%mod);
            }
        }

    }
    return 0;
}