首页 > 代码库 > 可变参数函数详解

可变参数函数详解

 

     可变参数函数又称参数个数可变函数(本文也简称变参函数),即函数参数数目可变。原型声明格式为:

type VarArgFunc(type FixedArg1, type FixedArg2, …);

     其中,参数可分为两部分:数目确定的固定参数和数目可变的可选参数。函数至少需要一个固定参数,其声明与普通函数参数相同;可选参数由于数目不定(0个或以上),声明时用"…"表示(“…”用作参数占位符)。固定参数和可选参数共同构成可变参数函数的参数列表。

     由于参数数目不定,使用可变参数函数通常能缩短编码,灵活性和易用性较高。

     典型的变参函数如printf(及其家族),其函数原型为:

int printf(const char* format, ...);

     printf函数除参数format固定外,后续参数的数目和类型均可变。实际调用时可有以下形式:

printf("string"); 

printf("%d", i); 

printf("%s", s); 

printf("number is %d, string is:%s", i, s);

……

 

1 变参函数实现原理

    C调用约定下可使用va_list系列变参宏实现变参函数,此处va意为variable-argument(可变参数)。典型用法如下:

#include <stdarg.h>

int VarArgFunc(int dwFixedArg, ...){ //以固定参数的地址为起点依次确定各变参的内存起始地址

    va_list pArgs = NULL;  //定义va_list类型的指针pArgs,用于存储参数地址

    va_start(pArgs, dwFixedArg); //初始化pArgs指针,使其指向第一个可变参数。该宏第二个参数是变参列表的前一个参数,即最后一个固定参数

    int dwVarArg = va_arg(pArgs, int); //该宏返回变参列表中的当前变参值并使pArgs指向列表中的下个变参。该宏第二个参数是要返回的当前变参类型

    //若函数有多个可变参数,则依次调用va_arg宏获取各个变参

    va_end(pArgs);  //将指针pArgs置为无效,结束变参的获取

    /* Code Block using variable arguments */

}

//可在头文件中声明函数为extern int VarArgFunc(int dwFixedArg, ...);,调用时用VarArgFunc(FixedArg, VarArg);

     变参宏根据堆栈生长方向和参数入栈特点,从最靠近第一个可变参数的固定参数开始,依次获取每个可变参数的地址。

     变参宏的定义和实现因操作系统、硬件平台及编译器而异(但原理相似)。System V Unix在varargs.h头文件中定义va_start宏为va_start(va_list arg_ptr),而ANSI C则在stdarg.h头文件中定义va_start宏为va_start(va_list arg_ptr, prev_param)。两种宏并不兼容,为便于程序移植通常采用ANSI C定义。

     gcc编译器使用内置宏间接实现变参宏,如#define va_start(v,l)  __builtin_va_start(v,l)。因为gcc编译器需要考虑跨平台处理,而其实现因平台而异。例如x86-64或PowerPC处理器下,参数不全都通过堆栈传递,变参宏的实现相比x86处理器更为复杂。

     x86平台VC6.0编译器中,stdarg.h头文件内变参宏定义如下:

typedef char * va_list;

#define _INTSIZEOF(n)       ( (sizeof(n)+sizeof(int)-1) & ~(sizeof(int)-1) )

#define va_start(ap,v)        ( ap = (va_list)&v + _INTSIZEOF(v) )

#define va_arg(ap, type)    ( *(type *)((ap += _INTSIZEOF(type)) - _INTSIZEOF(type)) )

#define va_end(ap)             ( ap = (va_list)0 )

     各宏的含义如下:

     ①_INTSIZEOF宏考虑到某些系统需要内存地址对齐。从宏名看应按照sizeof(int)即堆栈粒度对齐,即参数在内存中的地址均为sizeof(int)=4的倍数。例如,若在1≤sizeof(n)≤4,则_INTSIZEOF(n)=4;若5≤sizeof(n)≤8,则_INTSIZEOF(n)=8。

     为便于理解,简化该宏为

#define _INTSIZEOF(n)  ((sizeof(n) + x) & ~(x))

x = sizeof(int) - 1 = 3 = 0b’0000 0000 0000 0011

~x = 0b’1111 1111 1111 1100

     一个数与(~x)相与的结果是sizeof(int)的倍数,即_INTSIZEOF(n)将n圆整为sizeof(int)的倍数。

     ②va_start宏根据(va_list)&v得到第一个可变参数前的一个固定参数在堆栈中的内存地址,加上_INTSIZEOF(v)即v所占内存大小后,使ap指向固定参数后下个参数(第一个可变参数地址)。

     固定参数的地址用于va_start宏,因此不能声明为寄存器变量(地址无效)或作为数组类型(长度难定)。

     ③va_arg宏取得type类型的可变参数值。首先ap+=_INTSIZEOF(type),即ap跳过当前可变参数而指向下个变参的地址;然后ap-_INTSIZEOF(type)得到当前变参的内存地址,类型转换后返回当前变参值。

     va_arg宏的等效实现如下

//将指针移动至下个变参,并返回左移的值[-1](数组下标表示偏移量),即当前变参值

#define va_arg(ap,type)  ((type *)((ap) += _INTSIZEOF(type)))[-1]

     ④va_end宏使ap不再指向有效的内存地址。该宏的某些实现定义为((void*)0),编译时不会为其产生代码,调用与否并无区别。但某些实现中va_end宏用于函数返回前完成一些必要的清理工作:如va_start宏可能以某种方式修改堆栈,导致返回操作无法完成,va_end宏可将有关修改复原;又如va_start宏可能对参数列表动态分配内存以便于遍历va_list,va_end宏可释放此前动态分配的内存。因此,从使用va_start宏的函数中退出之前,必须调用一次va_end宏。

     函数内可多次遍历可变参数,但每次必须以va_start宏开始,因为遍历后ap指针不再指向首个变参。

     下图给出基于变参宏的可变参数在堆栈中的分布:

 

     变参宏无法智能识别可变参数的数目和类型,因此实现变参函数时需自行判断可变参数的数目和类型。前者可显式提供变参数目或设定遍历结束条件(如-1、‘\0‘或回车符等)。后者可显式提供变参类型枚举值,或在固定参数中包含足够的类型信息(如printf函数通过分析format字符串即可确定各变参类型),甚至主调函数和被调函数可约定变参的类型组织等。

 

2 变参函数代码示例

     本节给出若干遵循ANSI C标准形式的简单可变参数函数,基于这些示例可构造更为复杂实用的功能。

     示例函数必须包含stdio.h和stdarg.h头文件,并按需包含string.h头文件。

    【示例1】函数接受一个整型固定参数和一个整型可变参数,并打印这两个参数值。

1 void IntegerVarArgFunc(int i, ...){
2     va_list pArgs = NULL;
3     va_start(pArgs, i);
4     int j = va_arg(pArgs, int);
5     va_end(pArgs);
6     printf("i=%d, j=%d\n", i, j);
7 }
View Code

     分别采用以下三种方法调用:

     1) IntegerVarArgFunc(10);

     输出i=10, j=6803972(形参i的堆栈上方内容)

     2) IntegerVarArgFunc(10, 20);

     输出i=10, j=20,符合期望。

     3) IntegerVarArgFunc(10, 20, 30);

     输出i=10, j=20,多余的变参被忽略。

 

    【示例2】函数通过固定参数指定可变参数个数,循环打印所有变参值。

 1 //第一个参数定义可变参数个数,用于循环获取变参内容
 2 void ParseVarArgByNum(int dwArgNum, ...){
 3     va_list pArgs = NULL;
 4     va_start(pArgs, dwArgNum);
 5     int dwArgIdx;
 6     int dwArgVal = 0;
 7     for(dwArgIdx = 1; dwArgIdx <= dwArgNum; dwArgIdx++){
 8         dwArgVal = va_arg(pArgs, int);
 9         printf("The %dth Argument: %d\n",dwArgIdx, dwArgVal);
10     }
11     va_end(pArgs);
12 }
View Code

     调用方式为ParseVarArgByNum(3, 11, 22, 33);,输出:

     The 1th Argument: 11

     The 2th Argument: 22

     The 3th Argument: 33

 

    【示例3】函数定义一个结束标记,调用时通过最后一个参数传递该标记,以结束变参的遍历打印。

 1 //最后一个参数作为变参结束符(-1),用于循环获取变参内容
 2 void ParseVarArgByEnd(int dwStart, ...){
 3     va_list pArgs = NULL;
 4     va_start(pArgs, dwStart);
 5     int dwArgIdx = 0;
 6     int dwArgVal = dwStart;
 7     while(dwArgVal != -1){
 8         ++dwArgIdx;
 9         printf("The %dth Argument: %d\n",dwArgIdx, dwArgVal);
10         dwArgVal = va_arg(pArgs, int); //得到下个变参值
11     }
12     va_end(pArgs);
13 }
View Code

     调用方式为ParseVarArgByEnd(44, 55, -1);,输出:

     The 1th Argument: 44

     The 2th Argument: 55

 

    【示例4】函数自定义一些可能出现的参数类型,在变参列表中显式指定变参类型。可这样传递参数:参数数目,可变参数类型1,可变参数值1,可变参数类型2,可变参数值2,....。

 1 //可变参数采用<ArgType, ArgValue>的形式传递,以处理不同的变参类型
 2 typedef enum{
 3     CHAR_TYPE = 1,
 4     INT_TYPE,
 5     LONG_TYPE,
 6     FLOAT_TYPE,
 7     DOUBLE_TYPE,
 8     STR_TYPE
 9 }E_VAR_TYPE;
10 void ParseVarArgType(int dwArgNum, ...){
11     va_list pArgs = NULL;
12     va_start(pArgs, dwArgNum);
13 
14     int i = 0;
15     for(i = 0; i < dwArgNum; i++){
16         E_VAR_TYPE eArgType = va_arg(pArgs, int);
17         switch(eArgType){
18             case INT_TYPE:
19                 printf("The %dth Argument: %d\n", i+1, va_arg(pArgs, int));
20                 break;
21             case STR_TYPE:
22                 printf("The %dth Argument: %s\n", i+1, va_arg(pArgs, char*));
23                 break;
24             default:
25                 break;
26         }
27     }
28     va_end(pArgs);
29 }
View Code

     调用方式为ParseVarArgType(2, INT_TYPE, 222, STR_TYPE, "HelloWorld!");,输出:

     The 1th Argument: 222

     The 2th Argument: HelloWorld!

 

    【示例5】实现简易的MyPrintf函数。该函数无返回值,即不记录输出的字符数目;接受"%d"按整数输出、"%c"按字符输出、"%b"按二进制输出,"%%"输出‘%‘本身。

 1 char *MyItoa(int iValue, char *pszResBuf, unsigned int uiRadix){
 2     //If pszResBuf is NULL, string "Nil" is returned.
 3     if(NULL == pszResBuf){
 4         //May add more trace/log output here
 5         return "Nil";
 6     }
 7     
 8     //If uiRadix(Base of Number) is out of range[2,36],
 9      //empty resulting string is returned.
10     if((uiRadix < 2) || (uiRadix > 36)){
11         //May add more trace/log output here
12         *pszResBuf = \0;
13         return pszResBuf;
14     }
15 
16     char *pStr = pszResBuf; //Pointer to traverse string
17     char *pFirstDig = pszResBuf; //Pointer to first digit
18     if((10 == uiRadix) && (iValue < 0)){ //Negative decimal number
19         iValue = http://www.mamicode.com/(unsigned int)-iValue;
20         *pStr++ = -;
21         pFirstDig++;  //Skip negative sign
22     }
23 
24     int iTmpValue = http://www.mamicode.com/0;
25     do{
26         iTmpValue =http://www.mamicode.com/ iValue;
27         iValue /= uiRadix;
28         //Calculating the modulus operator(%) by hand saving a division
29         *pStr++ = "0123456789abcdefghijklmnopqrstuvwxyz"[iTmpValue - iValue * uiRadix];
30     }while(iValue);
31     *pStr-- = \0;  //Terminate string, pStr points to last digit(or negative sign)
32     //Now have a string of number in reverse order
33 
34     //Swap *pStr and *pFirstDig for reversing the string of number
35     while(pFirstDig < pStr){ //Repeat until halfway
36         char cTmpChar = *pStr;
37         *pStr--= *pFirstDig;
38         *pFirstDig++ = cTmpChar;
39     }
40     return pszResBuf;
41 }
42 
43 void MyPrintf(const char *pszFmt, ... ){
44     va_list pArgs = NULL;
45     va_start(pArgs, pszFmt);
46 
47     for(; *pszFmt != \0; ++pszFmt){
48         //若不是控制字符则原样输出字符
49         if(*pszFmt != %){
50             putchar(*pszFmt);
51             continue;
52         }
53 
54         //若是控制字符则查看下一字符
55         switch(*++pszFmt){
56             case %: //连续两个‘%‘输出单个‘%‘
57                 putchar(%);
58                 break;
59             case d: //按照整型输出
60                 printf("%d", va_arg(pArgs, int));
61                 break;
62             case c: //按照字符输出
63                 printf("%c", va_arg(pArgs, int)); //不可写为...va_arg(pArgs, char);
64                 break;
65             case b: {//按照二进制输出
66                 char aucStr[sizeof(int)*8 + 1] = {0};
67                 fputs(MyItoa(va_arg(pArgs, int), aucStr, 2), stdout);
68                 //printf(MyItoa(va_arg(pArgs, int), aucStr, 2));
69                 break;
70             }
71             default:
72                 vprintf(--pszFmt, pArgs);
73                 return;
74         }
75     }//end of for-loop
76     va_end(pArgs);
77 }
View Code

     调用方式为MyPrintf("Binary string of number %d is = %b!\n", 9999, 9999);,输出:

     Binary string of number 9999 is = 10011100001111!

     注意,MyPrintf函数for循环语句段旨在自定义格式化输出(如%b),而非实现printf库函数本身;否则直接使用vprintf(pszFmt, pArgs);即可。此外该函数存在一处明显缺陷,即%b前若出现case匹配项外的控制字符(如%x),则会调用vprintf函数处理该字符及其后的格式串,%b将会原样输出"%b"(而非转换为二进制)。

     本示例中也附带实现了MyItoa函数。该函数与非标准C语言扩展函数itoa功能相同。该函数将整数iValue转换为uiRadix 所指定的进制数字符串,并将其存入pszResBuf字符数组。

 

    【示例6】可变参数数目不多时,可用数组或结构体数组变相实现可变参数函数。

#define VAR_ARG_MAX_NUM    (unsigned char)10
#define VAR_ARG_MAX_LEN     (unsigned char)20
//可变参数信息
typedef struct{
    E_VAR_TYPE eArgType;
    unsigned char aucArgVal[VAR_ARG_MAX_LEN];
}VAR_ARG_ENTRY;
typedef struct{
    unsigned char ucArgNum;
    VAR_ARG_ENTRY aucVarArg[VAR_ARG_MAX_NUM];
}VAR_ARG_LIST;

void ParseStructArrayArg(VAR_ARG_LIST *ptVarArgList){
    int i = 0;
    for(i = 0; i < ptVarArgList->ucArgNum; i++){
        E_VAR_TYPE eArgType = ptVarArgList->aucVarArg[i].eArgType;
        switch(eArgType){
            case CHAR_TYPE:
                printf("The %dth Argument: %c\n", i+1, ptVarArgList->aucVarArg[i].aucArgVal[0]);
                break;
            case STR_TYPE:
                printf("The %dth Argument: %s\n", i+1, ptVarArgList->aucVarArg[i].aucArgVal);
                break;
            default:
                break;
        }
    }
}
View Code

     调用方式为

VAR_ARG_LIST tVarArgList = {2, {{CHAR_TYPE, {‘H‘}}, {STR_TYPE, "TEST"}}};

ParseStructArrayArg(&tVarArgList);

     输出:

     The 1th Argument: H

     The 2th Argument: TEST

     本示例函数原型稍加改造,显式声明参数数目如下:

void ParseStructArrayArg(unsigned char ucArgNum, VAR_ARG_ENTRY aucVarArg[]);或

void ParseStructArrayArg(unsigned char ucArgNum, VAR_ARG_ENTRY *aucVarArg);

     改造后的原型与main函数的带参原型非常相似!

int main(int argc, char *argv[]);或

int main(int argc, char **argv);

     若VAR_ARG_ENTRY内的变参数目和类型固定,则主调函数和被调函数双方约定后可采用char型数组替代VAR_ARG_ENTRY结构体数组。

     通过数组可替代某些不必要的变参函数实现,如对整数求和:

实现方式

可变参数函数

数组替代

函数代码

int SumVarArg(int dwStart, ...){

    va_list pArgs = NULL;

    va_start(pArgs, dwStart);

    int dwArgVal = dwStart, dwSum = 0;

    while(dwArgVal != 0){ //0为结束标志

        dwSum += dwArgVal;

        dwArgVal = va_arg(pArgs, int);

    };

    va_end(pArgs);

    return dwSum;

}

int SumArray(int aucArr[], int dwSize){

    int i = 0, dwSum = 0;

    for(i = 0; i < dwSize; i++){

        dwSum += aucArr[i];

    }

    return dwSum;

}

调用方式

SumVarArg(7, 2, 7, 11, -2, 0);

int aucArr[] = {7, 2, 7, 11, -2};

SumArrayArg(aucArr, sizeof(aucArr)/sizeof(aucArr[0]));

     数组方式调用时可方便地指定求和项的起止,如SumArrayArg(&aucArr[1], 3)将从数组aucArr的第2个元素开始累加3个元素,即2+7+11=20。而这是变参函数SumVarArg无法做到的。

 

3 变参函数注意事项

     可变参数函数在编程中应注意以下问题:

     1) 编译器对可变参数函数的原型检查不够严格,不利于编程查错。

     调用变参函数时,传递的变参数目应不少于该函数所期望的变参数目(该数目由主调函数实参指定或由变参函数内部实现决定),否则会访问到函数参数以外的堆栈区域,可能导致堆栈错误。

     如示例1中可变参数为char*类型(用%s打印) 时,若使用整型变参调用该函数,可能会出现段错误(Linux)或页面非法错误(Windows),也可能出现难以觉察的细微错误。

     printf函数格式化字符串参数所指定的类型与后面变参的类型不匹配时,也可能造成程序崩溃(尤其以%s打印整型参数值时)。

     gcc编译器提供attribute 机制用以编译时检查某些变参函数调用情况,如声明函数为

void OmciLog(LOG_TYPE eLogType, const char *pFmt, ...) __attribute__((format(printf,2,3)));

     表示函数原型中第2个参数(pFmt)为格式化字符串,从参数列表中第3个参数(即首个变参)开始与pFmt形式比较。该声明将对OmciLog(LOG_PON, "%s", 1)的调用产生编译警告:

VarArgs.c:204: warning: format ‘%s‘ expects type ‘char *‘, but argument 3 has type ‘int‘

     但该机制主要针对类似scanf/printf的变参函数,此类函数可根据格式化字符串确定变参数目和类型。

     2) va_arg(ap, type)宏获取变参时,type不可指定为以下类型:

  • char、signed char、unsigned char
  • short、unsigned short
  • signed shortshort int、signed short int、unsigned short int
  • float

     在C语言中,调用不带原型声明或声明为变参的函数时,主调函数会在传递未显式声明的参数前对其执行“缺省参数提升(default argument promotions)”,将提升后的参数值传递给被调函数。

     提升操作如下:

  • float类型的参数提升为double类型
  • char、short和相应的signed、unsigned类型参数提升为int类型
  • 若int类型不能存储原值,则提升为unsigned int类型

     在gcc 编译器中,若type使用char或unsigned short int等需提升的类型,可能会得到严重警告。 

     因此,若要获取变参数列表中float类型的实参,则变参函数中应使用double dVar = va_arg(ap, double)或float fVar = (float)va_arg(ap, double)。char和short类型实参处理方式与之类似。

     3) 使用va_arg宏获取变参列表中类型为函数指针的参数时,可能需要将函数指针用typedef定义为新的数据类型,以便通过编译(与va_arg宏的实现有关)。

     对于VC6.0的va_arg宏实现,若用该宏从变参列表中提取函数指针类型的参数,如

va_arg(argp, int(*)());

     被扩展为以下形式(为缩减长度直接写出_INTSIZEOF宏值)

( *(int (*)() *)((pArgs += 4) - 4) );

     显然,(int (*)() *)无意义。

     解决方法如下

typedef int (*pFunc)();

     va_arg(argp, pFunc)被扩展为(*(pFunc *)((pArgs += 4) - 4)),即可通过编译检查。

     而在gcc编译器下,va_arg宏可直接使用函数指针类型。

 1 //for Gcc Compiler
 2 int DummyFunc(void){printf("Here!!!\n"); return 0; }
 3 void ParseFuncPtrVarArg(int i, ...){
 4     va_list pArgs = NULL;
 5     va_start(pArgs, i);
 6     char *sVal = va_arg(pArgs, char*);
 7     va_end(pArgs);
 8     printf("%d %s ", i, sVal);
 9 
10     int (*pf)() = va_arg(pArgs, int (*)());
11     pf();
12 }
View Code

     以ParseFuncPtrVarArg(1, "Welcome", DummyFunc);方式调用,输出为1 Welcome Here!!!。

     4) C语言层面上无法将函数A的可变参数直接传递给函数B。只能定义被调函数的参数为va_list类型,在主调函数中将可变参数列表转换为va_list,再进行可变参数的传递。这种技巧常用于定制打印函数:

 1 INT32S OmciLog(E_LOG_TYPE eLogType, const CHAR *pszFmt, ...){
 2     CHECK_SINGLE_POINTER(pFormat, RETURN_VOID);
 3 
 4     if(0 == GET_BIT(gOmciLogCtrl, eLogType))
 5         return;
 6 
 7     CHAR aucLogBuf[OMCI_LOG_BUF_LEN] = {0};
 8     va_list pArgs = NULL;
 9     va_start(pArgs, pszFmt);
10     INT32S dwRetVal = vsnprintf(aucLogBuf, sizeof(aucLogBuf), pszFmt, pArgs);
11     va_end(pArgs);
12 
13     OUTPUT_LOG(aucLogBuf);
14     return dwRetVal;
15 }
View Code

     其中被调函数vsnprintf可根据va_arg(pszFmt, pArgs)依次取出所需的变参。

     以OmciLog("%d %f %s\n", 10, 20.3, "ABC");方式调用,输出为10 20.300000 ABC。

     5) 可变参数必须从头到尾按照顺序逐个访问。可访问几个变参后中止,但不能一开始就访问变参列表中间的参数。

     6) ANSI C要求至少定义一个固定参数(ISO C requires a named argument before ‘...‘),该参数将传递给va_start宏以查找参数列表的可变部分。故不可定义void func(...)这样的函数。

     7) 变参宏实现与堆栈相关,在参数入寄存器的处理器下实现可能异常复杂(gcc中va_start宏会将所有可能用于变参传递的寄存器均保存在栈中)。因此如非必要,应尽量避免使用变参宏。C语言中除示例6中数组或结构体数组替代方式外,还可采用回调函数方式"抛出"变化部分,如:

 1 /**********************************************************************
 2 * 函数名称: OmciLocateListNode
 3 * 功能描述: 查找链表首个与pData满足函数fCompareNode判定关系的结点
 4 * 输入参数: T_OMCI_LIST* pList           :链表指针
 5 *            VOID* pData                  :待比较数据指针
 6 *            CompareNodeFunc fCompareNode :比较回调函数指针
 7 * 输出参数: NA
 8 * 返 回 值: T_OMCI_LIST_NODE* 链表结点指针(未找到时返回NULL)
 9 ***********************************************************************/
10 T_OMCI_LIST_NODE* OmciLocateListNode(T_OMCI_LIST *pList, VOID *pData, CompareNodeFunc fCompareNode)
11 {
12     CHECK_TRIPLE_POINTER(pList, pData, fCompareNode, NULL);
13     CHECK_SINGLE_POINTER(pList->pHead, NULL);
14     CHECK_SINGLE_POINTER(pList->pHead->pNext, NULL);
15 
16     if(0 == pList->dwNodeNum)
17     {
18         return NULL;
19     }
20 
21     T_OMCI_LIST_NODE *pListNode = pList->pHead->pNext;
22     while(pListNode != pList->pHead)
23     {
24         if(0 == fCompareNode(pListNode->pNodeData, pData, pList->dwNodeDataSize))
25             return pListNode;
26 
27         pListNode = pListNode->pNext;
28     }
29 
30     return NULL;
31 }
View Code

     OmciLocateListNode函数是下面Omci_List_Query函数的另一实现。主调函数提供fCompareNode回调函数以比较链表结点,从而简化代码实现,并增强可读性。

 1 /***************************************************************
 2  * Function: Omci_List_Query
 3  * Description -
 4  *     根据给定的KEY偏移和KEY长度,查找目标节点
 5  * Input: 
 6  *     pList: 链表
 7  *     可变参数: 三个参数为一组,第一个为key value,第二个为key
 8  *               偏移,第三个为key长度,以LIST_END表示参数结束。
 9  * Output: 
10  * Returns: 
11  * 
12  * modification history
13  * -------------------------------
14  * Created : 2011-5-25 by xxx
15  * ------------------------------
16  ***************************************************************/
17 OMCI_LIST_NODE* Omci_List_Query(OMCI_LIST *pList, ...)
18 {
19     OMCI_LIST_NODE_KEY  aKeyGroup[MAX_LIST_NODE_KEYS_NUM];
20     OMCI_LIST_NODE *pNode=NULL;
21     INT8U *pData=http://www.mamicode.com/NULL, *pKeyValue=http://www.mamicode.com/NULL;
22     INT8U ucKeyNum=0, i;
23     INT32U iKeyOffset=0, iKeyLen=0;
24     VA_LIST tArgList;
25 
26     if(NULL==pList)
27         return NULL;
28     memset((INT8U*)aKeyGroup, 0, sizeof(OMCI_LIST_NODE_KEY)*MAX_LIST_NODE_KEYS_NUM);
29     VA_START(tArgList, pList);
30     while(TRUE)
31     {
32         pKeyValue=http://www.mamicode.com/VA_ARG(tArgList, INT8U*);
33         if(LIST_END==pKeyValue)
34             break;
35         iKeyOffset=VA_ARG(tArgList, INT32U);
36         iKeyLen=VA_ARG(tArgList, INT32U);
37         if(0==iKeyLen)
38         {
39             VA_END(tArgList);
40             return NULL;
41         }
42         if(ucKeyNum>=MAX_LIST_NODE_KEYS_NUM)
43         {
44             VA_END(tArgList);
45             return NULL;
46         }
47         aKeyGroup[ucKeyNum].pKeyValue=http://www.mamicode.com/pKeyValue;
48         aKeyGroup[ucKeyNum].iKeyOffset=iKeyOffset;
49         aKeyGroup[ucKeyNum++].iKeyLen=iKeyLen;
50     }
51     VA_END(tArgList);
52 
53     pNode=Omci_List_First(pList);
54     while(NULL!=pNode)
55     {
56         pData=http://www.mamicode.com/(INT8U*)pNode->pNodeData;
57         for(i=0; i<ucKeyNum; i++)
58         {
59             if(0!=memcmp(&pData[aKeyGroup[i].iKeyOffset], aKeyGroup[i].pKeyValue, aKeyGroup[i].iKeyLen))
60                 break;
61         }
62         if(i>=ucKeyNum)
63         {
64             break;
65         }
66         pNode=pNode->pNext;
67     }
68     return pNode;
69 }
View Code

     在C++语言里,可利用多态性来实现可变参数的功能(但灵活性有所下降)。 

 

【扩展阅读】vsnprintf函数

vsnprintf函数原型为:int vsnprintf(char *str, size_t size, const char *format, va_list ap)。

该函数将根据format字符串来转换并格式化ap所指向的可变参数列表,并将结果字符串以不超过size字节(包括字符串结束符‘\0‘)的长度写入str所指向的字符串缓冲区(该缓冲区大小至少为size字节)。若结果字符串超过size-1个字符,则丢弃多余字节,但将其计入函数返回值。若函数执行成功,则返回本该写入的字符数目(包括字符串结束符);否则将返回负值。因此,仅当返回值为小于size的非负值时,表明结果字符串被完全写入(大于等于size则意味着字符串被截断)。