首页 > 代码库 > Storm入门2-单词计数案例学习
Storm入门2-单词计数案例学习
【本篇文章主要是通过一个单词计数的案例学习,来加深对storm的基本概念的理解以及基本的开发流程和如何提交并运行一个拓扑】
单词计数拓扑WordCountTopology实现的基本功能就是不停地读入一个个句子,最后输出每个单词和数目并在终端不断的更新结果,拓扑的数据流如下:
- 语句输入Spout: 从数据源不停地读入数据,并生成一个个句子,输出的tuple格式:{"sentence":"hello world"}
- 语句分割Bolt: 将一个句子分割成一个个单词,输出的tuple格式:{"word":"hello"} {"word":"world"}
- 单词计数Bolt: 保存每个单词出现的次数,每接到上游一个tuple后,将对应的单词加1,并将该单词和次数发送到下游去,输出的tuple格式:{"hello":"1"} {"world":"3"}
- 结果上报Bolt: 维护一份所有单词计数表,每接到上游一个tuple后,更新表中的计数数据,并在终端将结果打印出来。
开发步骤:
1.环境
- 操作系统:mac os 10.10.3
- JDK: jdk1.8.0_40
- IDE: intellij idea 15.0.3
- Maven: apache-maven-3.0.3
2.项目搭建
- 在idea新建一个maven项目工程:storm-learning
- 修改pom.xml文件,加入strom核心的依赖,配置slf4j依赖,方便Log输出
<dependencies> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.2</version> </dependency></dependencies>
3. Spout和Bolt组件的开发
- SentenceSpout
- SplitSentenceBolt
- WordCountBolt
- ReportBolt
SentenceSpout.java
1 public class SentenceSpout extends BaseRichSpout{ 2 3 private SpoutOutputCollector spoutOutputCollector; 4 5 //为了简单,定义一个静态数据模拟不断的数据流产生 6 private static final String[] sentences={ 7 "The logic for a realtime application is packaged into a Storm topology", 8 "A Storm topology is analogous to a MapReduce job", 9 "One key difference is that a MapReduce job eventually finishes whereas a topology runs forever",10 " A topology is a graph of spouts and bolts that are connected with stream groupings"11 };12 13 private int index=0;14 15 //初始化操作16 public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {17 this.spoutOutputCollector = spoutOutputCollector;18 }19 20 //核心逻辑21 public void nextTuple() {22 spoutOutputCollector.emit(new Values(sentences[index]));23 ++index;24 if(index>=sentences.length){25 index=0;26 }27 }28 29 //向下游输出30 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {31 outputFieldsDeclarer.declare(new Fields("sentences"));32 }33 }
SplitSentenceBolt.java
1 public class SplitSentenceBolt extends BaseRichBolt{ 2 3 private OutputCollector outputCollector; 4 5 public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { 6 this.outputCollector = outputCollector; 7 } 8 9 public void execute(Tuple tuple) {10 String sentence = tuple.getStringByField("sentences");11 String[] words = sentence.split(" ");12 for(String word : words){13 outputCollector.emit(new Values(word));14 }15 }16 17 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {18 outputFieldsDeclarer.declare(new Fields("word"));19 }20 }
WordCountBolt.java
1 public class WordCountBolt extends BaseRichBolt{ 2 3 //保存单词计数 4 private Map<String,Long> wordCount = null; 5 6 private OutputCollector outputCollector; 7 8 public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { 9 this.outputCollector = outputCollector;10 wordCount = new HashMap<String, Long>();11 }12 13 public void execute(Tuple tuple) {14 String word = tuple.getStringByField("word");15 Long count = wordCount.get(word);16 if(count == null){17 count = 0L;18 }19 ++count;20 wordCount.put(word,count);21 outputCollector.emit(new Values(word,count));22 }23 24 25 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {26 outputFieldsDeclarer.declare(new Fields("word","count"));27 }28 }
ReportBolt.java
1 public class ReportBolt extends BaseRichBolt { 2 3 private static final Logger log = LoggerFactory.getLogger(ReportBolt.class); 4 5 private Map<String, Long> counts = null; 6 7 public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) { 8 counts = new HashMap<String, Long>(); 9 }10 11 public void execute(Tuple tuple) {12 String word = tuple.getStringByField("word");13 Long count = tuple.getLongByField("count");14 counts.put(word, count);15 //打印更新后的结果16 printReport();17 }18 19 public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {20 //无下游输出,不需要代码21 }22 23 //主要用于将结果打印出来,便于观察24 private void printReport(){25 log.info("--------------------------begin-------------------");26 Set<String> words = counts.keySet();27 for(String word : words){28 log.info("@report-bolt@: " + word + " ---> " + counts.get(word));29 }30 log.info("--------------------------end---------------------");31 }32 }
4.拓扑配置
- WordCountTopology
1 public class WordCountTopology { 2 3 private static final Logger log = LoggerFactory.getLogger(WordCountTopology.class); 4 5 //各个组件名字的唯一标识 6 private final static String SENTENCE_SPOUT_ID = "sentence-spout"; 7 private final static String SPLIT_SENTENCE_BOLT_ID = "split-bolt"; 8 private final static String WORD_COUNT_BOLT_ID = "count-bolt"; 9 private final static String REPORT_BOLT_ID = "report-bolt";10 11 //拓扑名称12 private final static String TOPOLOGY_NAME = "word-count-topology";13 14 public static void main(String[] args) {15 16 log.info(".........begining.......");17 //各个组件的实例18 SentenceSpout sentenceSpout = new SentenceSpout();19 SplitSentenceBolt splitSentenceBolt = new SplitSentenceBolt();20 WordCountBolt wordCountBolt = new WordCountBolt();21 ReportBolt reportBolt = new ReportBolt();22 23 //构建一个拓扑Builder24 TopologyBuilder topologyBuilder = new TopologyBuilder();25 26 //配置第一个组件sentenceSpout27 topologyBuilder.setSpout(SENTENCE_SPOUT_ID, sentenceSpout, 2);28 29 //配置第二个组件splitSentenceBolt,上游为sentenceSpout,tuple分组方式为随机分组shuffleGrouping30 topologyBuilder.setBolt(SPLIT_SENTENCE_BOLT_ID, splitSentenceBolt).shuffleGrouping(SENTENCE_SPOUT_ID);31 32 //配置第三个组件wordCountBolt,上游为splitSentenceBolt,tuple分组方式为fieldsGrouping,同一个单词将进入同一个task中(bolt实例)33 topologyBuilder.setBolt(WORD_COUNT_BOLT_ID, wordCountBolt).fieldsGrouping(SPLIT_SENTENCE_BOLT_ID, new Fields("word"));34 35 //配置最后一个组件reportBolt,上游为wordCountBolt,tuple分组方式为globalGrouping,即所有的tuple都进入这一个task中36 topologyBuilder.setBolt(REPORT_BOLT_ID, reportBolt).globalGrouping(WORD_COUNT_BOLT_ID);37 38 Config config = new Config();39 40 //建立本地集群,利用LocalCluster,storm在程序启动时会在本地自动建立一个集群,不需要用户自己再搭建,方便本地开发和debug41 LocalCluster cluster = new LocalCluster();42 43 //创建拓扑实例,并提交到本地集群进行运行44 cluster.submitTopology(TOPOLOGY_NAME, config, topologyBuilder.createTopology());45 }46 }
5.拓扑执行
- 方法一:通过IDEA执行
在idea中对代码进行编译compile,然后run;
观察控制台输出会发现,storm首先在本地自动建立了运行环境,即启动了zookepeer,接着启动nimbus,supervisor;然后nimbus将提交的topology进行分发到supervisor,supervisor启动woker进程,woker进程里利用Executor来运行topology的组件(spout和bolt);最后在控制台发现不断的输出单词计数的结果。
zookepeer的连接建立
nimbus启动
supervisor启动
worker启动
Executor启动执行
结果输出
- 方法二:通过maven来执行
- 进入到该项目的主目录下:storm-learning
- mvn compile 进行代码编译,保证代码编译通过
- 通过mvn执行程序:
mvn exec:java -Dexec.mainClass="wordCount.WordCountTopology"
- 控制台输出的结果跟方法一一致
Storm入门2-单词计数案例学习
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。