首页 > 代码库 > hdu4455之树状数组+DP
hdu4455之树状数组+DP
Substrings
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1571 Accepted Submission(s): 459
Problem Description
XXX has an array of length n. XXX wants to know that, for a given w, what is the sum of the distinct elements’ number in all substrings of length w. For example, the array is { 1 1 2 3 4 4 5 } When w = 3, there are five substrings of length 3. They are (1,1,2),(1,2,3),(2,3,4),(3,4,4),(4,4,5)
The distinct elements’ number of those five substrings are 2,3,3,2,2.
So the sum of the distinct elements’ number should be 2+3+3+2+2 = 12
The distinct elements’ number of those five substrings are 2,3,3,2,2.
So the sum of the distinct elements’ number should be 2+3+3+2+2 = 12
Input
There are several test cases.
Each test case starts with a positive integer n, the array length. The next line consists of n integers a1,a2…an, representing the elements of the array.
Then there is a line with an integer Q, the number of queries. At last Q lines follow, each contains one integer w, the substring length of query. The input data ends with n = 0 For all cases, 0<w<=n<=106, 0<=Q<=104, 0<= a1,a2…an <=106
Each test case starts with a positive integer n, the array length. The next line consists of n integers a1,a2…an, representing the elements of the array.
Then there is a line with an integer Q, the number of queries. At last Q lines follow, each contains one integer w, the substring length of query. The input data ends with n = 0 For all cases, 0<w<=n<=106, 0<=Q<=104, 0<= a1,a2…an <=106
Output
For each test case, your program should output exactly Q lines, the sum of the distinct number in all substrings of length w for each query.
Sample Input
7 1 1 2 3 4 4 5 3 1 2 3 0
Sample Output
7 10 12
/*分析: dp[i]表示区间长度为i时的个数 则从区间长度i-1到i减少了最后一个i-1长度的区间 记last[i]表示最后一个区间长度为i的不同数的个数 所以dp[i]=dp[i-1]-last[i-1] 同时从区间i-1长度到i增加了n-i+1个数 增加的数为a[i],a[i+1],a[i+2]...a[n] 则增加的这些数表示区间长度为i且以a[i...n]结尾 有多少是不能增加的呢? 比如a[1]~a[i-1]存在a[i],以a[i]结尾的区间长度为i的区间就不用增加a[i]这个数 在这里预处理时以a[i]结尾的区间长度为l~r不能增加 则l=i-pos[a[i]]+1;//pos[a[i]]表示i位置前出现的a[i] r=i-1+1+1 用树状数组能快速的累加 所以最终增加的是n-i+1-Query(i) */ #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <algorithm> #include <map> #include <cmath> #include <iomanip> #define INF 99999999 typedef __int64 LL; using namespace std; const int MAX=1000000+10; int n,m; int pos[MAX],a[MAX]; LL dp[MAX],last[MAX],c[MAX]; int lowbit(int x){ return x&(-x); } void Update(int x,int d){ while(x<=n){ c[x]+=d; x+=lowbit(x); } } LL Query(int x){ LL sum=0; while(x>0){ sum+=c[x]; x-=lowbit(x); } return sum; } int main(){ while(~scanf("%d",&n),n){ memset(pos,-1,sizeof pos); memset(c,0,sizeof c); for(int i=1;i<=n;++i){ scanf("%d",&a[i]); if(pos[a[i]] != -1){ Update(i-pos[a[i]]+1,1); Update(i-1+2,-1); } pos[a[i]]=i; } memset(pos,-1,sizeof pos); memset(last,0,sizeof last);//last记录最后面的长度为i的不同数的个数 for(int i=n;i>=1;--i){ last[n-i+1]=last[n-i]; if(pos[a[i]] == -1)++last[n-i+1]; pos[a[i]]=i; } dp[1]=n; for(int i=2;i<=n;++i){ dp[i]=dp[i-1]+(n-i+1-Query(i))-last[i-1]; } scanf("%d",&m); for(int i=0;i<m;++i){ scanf("%d",&n); printf("%I64d\n",dp[n]); } } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。