首页 > 代码库 > RCF—用于C++的进程间通讯(1)

RCF—用于C++的进程间通讯(1)

基础

我们从一个标准的echo服务器和客户端的例子来开始,这样的例子可以在几乎所有的网络和IPC示例中见到。我们暴露(expose)然后调用一个函数,这个函数接受一个字符串,并且返回一个相同的字符串,使用RCF,服务器端的代码是这样的:

 #include RCFIdl.hpp
#include RCFRcfServer.hpp
#include RCFTcpEndpoint.hpp

RCF_BEGIN(I_Echo, I_Echo)
    RCF_METHOD_R1(std::string, echo, const std::string &)
RCF_END(I_Echo)

class Echo
{
public:
    std::string echo(const std::string &s)
    {
        return s;
    }
};

int main()
{
    Echo echo;
    RCF::RcfServer server(RCF::TcpEndpoint(50001));
    server.bind<I_Echo>(echo);
    server.startInThisThread();
    return 0;
}


 

... 客户端代码如下:

 #include <RCF/Idl.hpp>

#include <RCF/TcpEndpoint.hpp>


RCF_BEGIN(I_Echo, "I_Echo")
    RCF_METHOD_R1(std::string, echo, const std::string &)
RCF_END(I_Echo)

int main()
{
    RcfClient<I_Echo> echoClient(RCF::TcpEndpoint("localhost", 50001));
    std::string s = echoClient.echo(RCF::Twoway, "what‘s up");
    return 0;
}

 

I_Echo是用RCF_BEGIN/RCF_METHOD/RCF_END宏进行定义的一个接口。这些接口对应于CORBA里的IDL定义,但是在这里,接口定义是被放在C++的源代码里,所以并不需要另外的编译步骤。服务器端和客户端代码简单地包含这些接口,然后和其他的代码一起编译。

客户端桩(stub)中的参数RCF::Twoway用来告诉RCF采用一个two-way方式的客户端调用,这种方式下,客户端发送一个请求并且等待响应,如果在一定时间内没有收到响应(这个时间是可配的),将会抛出一个异常。另一个选项是RCF::Oneway,这种方式下,如果服务端没有发送响应,客户端调用桩会立即把控制返回给用户。

在客户端调用中,把这个双向实参(directional argument)作为第一个参数,可以在代码里清楚地知道远程调用是采用哪种方式。一般说来,远程调用都会被规划为看起来像本地调用一样(正统的RPC观点),但在我看来,透明更重要一些。然而,如果你愿意,通过不传递那个双向实参(directional argument)从而以RPC风格来进行一个远程调用(这时调用是以two-way方式进行的)。

客户端桩时没有进行任何同步操作,所以应该在同一个线程里进行访问。服务端尽管是支持多线程,但在上面的例子中,还是以一个线程来运行的。RcfServer::startInThisThread()劫持了调用线程,并把它变为一个工作线程。

可以通过调用RcfServer::start(false)然后重复调用RcfServer::cycle()来达到相同的效果。在多线程版本中,也可以调用RcfServer::start(),然后驱动服务器的现场将会被自动创建。多线程版本需要Boost.Threads库,并且要定义RCF_USE_BOOST_THREADS预处理符号。

我们也可以用UDP协议来重写上面的客户端和服务器端。这次我们让服务器端和客户端程序运行在一个进程的不同线程里。

#include <RCF/Idl.hpp>
#include <RCF/RcfServer.hpp>
#include <RCF/UdpEndpoint.hpp>

#ifndef RCF_USE_BOOST_THREADS
#error Need to build with RCF_USE_BOOST_THREADS
#endif

RCF_BEGIN(I_Echo, "I_Echo")
    RCF_METHOD_R1(std::string, echo, const std::string &)
RCF_END(I_Echo)

class Echo
{
public:
    std::string echo(const std::string &s)
    {
        return s;
    }
};

int main()
{
    Echo echo;
    RCF::RcfServer server(RCF::UdpEndpoint(50001));
    server.bind<I_Echo>(echo);
    server.start();
    RcfClient<I_Echo> echoClient(RCF::UdpEndpoint("127.0.0.1", 50001));
    std::string s = echoClient.echo(RCF::Twoway, "what‘s up");
    server.stop(); // would happen anyway as server object goes out of scope

    return 0;
}

 

和TCP不同的是UDP是无状态的。数据包不能保证是发送时的顺序被接收到,也不能保证所有的发送的数据包都会被接收到。在像上面的例子的本地连接中,使用two-way方式一般来说是能够正常工作的,因为这些数据包并没有从变幻莫测的真实网络中传输。通常,这种情况应该用one-way方式。

接口

接口定义宏的功能和之前一个版本的RCF是完全一致的。RCF_BEGIN()宏用给定的名字和运行时描述来开始一个接口的定义,RCF_END()宏来结束接口定义。在两者中间,用RCF_METHOD_xx()宏可以定义一共25个接口的成员方法。

RCF_METHOD_xx()宏的后两个字母表示参数的个数和返回类型是否是一个void。比如说,RCF_METHOD_V3用来定义一个三个参数返回值类型为void的方法。

使用这些宏定义了RcfClient<type>类,这里的type是这个接口的名字。这个类直接用作客户端的客户端桩,间接地用作服务器端的服务桩。RCF的接口也可以定义在任意的名字空间内:

namespace A
{
    namespace B
    {
        RCF_BEGIN(I_X, "I_X")
        RCF_METHOD_V0(void, func1)
        RCF_METHOD_R5(int, func2, int, int, int, int, int)
        RCF_METHOD_R0(std::auto_ptr<std::string>, func3)
        RCF_METHOD_V2(void, func4,
           const boost::shared_ptr<std::string> &,
           boost::shared_ptr<std::string> &)
        // ..

        RCF_END(I_X)
    }
}

int main()
{
    A::B::RcfClient<A::B::I_X> client;
    // or

    A::B::I_X::RcfClient client;
    // ...

}


 

服务器绑定

在服务器端,接口需要绑定到一个具体的实现上。通过RcfServer::bind()方法来实现这个绑定。根据内存管理方式的不同,绑定有几种变化。下面的几种调用都可以实现一模一样的事情:把一个Echo对象绑定到I_Echo接口上。

{
    // bind to an object...

    Echo echo;
    server.bind<I_Echo>(echo);

    // or to a std::auto_ptr<>...

    std::auto_ptr<Echo> echoAutoPtr(new Echo());
    server.bind<I_Echo>(echoAutoPtr);

    // or to a boost::shared_ptr<>...

    boost::shared_ptr<Echo> echoPtr(new Echo());
    server.bind<I_Echo>(echoPtr);

    // or to a boost::weak_ptr<>...

    boost::weak_ptr<Echo> echoWeakPtr(echoPtr);
    server.bind<I_Echo>(echoWeakPtr);
}


 

默认情况下,客户端可以通过接口的名字来使用绑定。服务器端可以通过同一个接口暴露(expose)多个服务器端对象,但是在这种情况下,需要明确指定每个对象的名字:

 {
    RcfServer server(endpoint);

    // bind first object

    Echo echo1;
    server.bind<I_Echo>(echo1, "Echo1");

    // bind second object

    Echo echo2;
    server.bind<I_Echo>(echo2, "Echo2");

    server.start();

    RcfClient<I_Echo> echoClient(endpoint);

    echoClient.getClientStub().setServerBindingName("Echo1");
    std::cout << echoClient.echo("this was echoed by the echo1 object");

    echoClient.getClientStub().setServerBindingName("Echo2");
    std::cout << echoClient.echo("this was echoed by the echo2 object");
}