首页 > 代码库 > poj 2253 Frogger (dijkstra最短路)
poj 2253 Frogger (dijkstra最短路)
题目链接:http://poj.org/problem?id=2253
Frogger
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 25773 | Accepted: 8374 |
Description
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists‘ sunscreen, he wants to avoid swimming and instead reach her by jumping.
Unfortunately Fiona‘s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog‘s jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy‘s stone, Fiona‘s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy‘s and Fiona‘s stone.
Unfortunately Fiona‘s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog‘s jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy‘s stone, Fiona‘s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy‘s and Fiona‘s stone.
Input
The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy‘s stone, stone #2 is Fiona‘s stone, the other n-2 stones are unoccupied. There‘s a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
Sample Input
20 03 4317 419 418 50
Sample Output
Scenario #1Frog Distance = 5.000Scenario #2Frog Distance = 1.414
Source
Ulm Local 1997
题目大意:有两只青蛙和若干块石头,其中一只青蛙想去拜访另一只青蛙,现在已知这些东西的坐标,两只青蛙坐标分别是第一个和第二个坐标,并且这只青蛙可以借助任意石头的跳跃,而两只青蛙之间有若干通路,问两只的所有通路上的最大边,然后在通过这些最大边来找最短路。
从起点到终点会有很多路径,每条路径上的边有一个最大值,求这些最大值中的最小值。
也就是更新的边要保持最大边。
特别注意:这里我也不是很懂的地方,在最后输出的时候用%.3lf就是死命的wa,而改成%.3f就轻松ac了,其实不过在poj上是可以过得了,如果过不了再改也是可以的了,我是在专题里面一直wa,表示很无奈~
不多说了,看代码~
1 #include <stdio.h> 2 #include <math.h> 3 const int INF=1010101010; 4 double map[1010][1010],node[1010],Min; 5 int n,vis[1010]; 6 7 double Max(double a,double b) 8 { 9 return a>b?a:b;10 }11 12 void dijkstra()13 {14 int i,j,k,m;15 for (i=0; i<n; i++)16 {17 node[i]=map[0][i];18 vis[i]=0;19 }20 vis[0]=1;21 for (k=0; k<n; k++)22 {23 Min=INF;24 m=-1;25 for (i=1; i<n; i++)26 if (!vis[i])27 {28 if (Min>node[i])29 {30 Min=node[i];31 m=i;32 }33 }34 if (m==-1)35 break;36 vis[m]=1;37 //tm=m;38 for (i=0; i<n; i++)39 {40 if (!vis[i]&&Max(node[m],map[m][i])<node[i])41 node[i]=Max(node[m],map[m][i]);42 43 }44 }45 }46 47 int main ()48 {49 double a[210],b[210];50 int count=0,i,j;51 while (scanf("%d",&n),n)52 {53 for (i=0; i<n; i++)54 {55 scanf("%lf%lf",&a[i],&b[i]);56 }57 for (i=0; i<n; i++)58 {59 for (j=0; j<n; j++)60 {61 map[i][j]=map[j][i]=(a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]);62 63 }64 }65 dijkstra();66 printf("Scenario #%d\n", ++count);67 printf("Frog Distance = %.3f\n\n", sqrt(node[1]));68 }69 return 0;70 }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。