首页 > 代码库 > BNUOJ 2461 Anniversary party

BNUOJ 2461 Anniversary party

Anniversary party

Time Limit: 1000ms
Memory Limit: 65536KB
This problem will be judged on PKU. Original ID: 2342
64-bit integer IO format: %lld      Java class name: Main
 
 
There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a tree rooted at the rector V. E. Tretyakov. In order to make the party funny for every one, the rector does not want both an employee and his or her immediate supervisor to be present. The personnel office has evaluated conviviality of each employee, so everyone has some number (rating) attached to him or her. Your task is to make a list of guests with the maximal possible sum of guests‘ conviviality ratings.
 

Input

Employees are numbered from 1 to N. A first line of input contains a number N. 1 <= N <= 6 000. Each of the subsequent N lines contains the conviviality rating of the corresponding employee. Conviviality rating is an integer number in a range from -128 to 127. After that go N – 1 lines that describe a supervisor relation tree. Each line of the tree specification has the form: 
L K 
It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line 
0 0 
 

Output

Output should contain the maximal sum of guests‘ ratings.
 

Sample Input

711111111 32 36 47 44 53 50 0

Sample Output

5

Source

Ural State University Internal Contest October‘2000 Students Session
 
解题:。。。。
 
 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <climits> 7 #include <vector> 8 #include <queue> 9 #include <cstdlib>10 #include <string>11 #include <set>12 #include <stack>13 #define LL long long14 #define pii pair<int,int>15 #define INF 0x3f3f3f3f16 using namespace std;17 const int maxn = 6010;18 int dp[maxn][2],w[maxn],n,in[maxn];19 vector<int>g[maxn];20 void dfs(int u,int fa){21     dp[u][1] = w[u];22     for(int i = 0; i < g[u].size(); i++){23         if(g[u][i] == fa) continue;24         dfs(g[u][i],u);25         dp[u][1] += dp[g[u][i]][0];//u来,g[u][i]不来26         dp[u][0] += max(dp[g[u][i]][1],dp[g[u][i]][0]);27         //u不来,g[u][i]来或者不来28     }29 }30 int main() {31     int i,j,u,v,tmp;32     while(~scanf("%d",&n)){33         for(i = 1; i <= n; i++){34             scanf("%d",w+i);35             g[i].clear();36             in[i] = 0;37             dp[i][0] = dp[i][1] = 0;38         }39         for(i = 1; i; i++){40             scanf("%d %d",&u,&v);41             if(u+v == 0) break;42             g[u].push_back(v);43             g[v].push_back(u);44             in[v]++;45         }46         for(i = 1; i <= n; i++){47             if(!in[i]){dfs(i,-1);break;}48         }49         printf("%d\n",max(dp[i][0],dp[i][1]));50     }51     return 0;52 }
View Code