首页 > 代码库 > Android性能优化之使用线程池

Android性能优化之使用线程池

在写程序时有些异步程序只执行一遍就不需要了,为了方便经常会写下面的代码

new Thread(new Runnable() {
 
    @Override
    public void run() {
        // TODO Auto-generated method stub
    }
}).start();
这样new出来的匿名对象会存在一些问题
1.由于是匿名的,无法对它进行管理
2.如果需要多次执行这个操作就new多次,可能创建多个,占用系统资源
3.无法执行更多的操作
使用线程池的好处
1.可以重复利用存在的线程,减少系统的开销
2.利用线程池可以执行定时、并发数的控制


Java的线程池对Android也是适用的
线程池的作用:
线程池作用就是限制系统中执行线程的数量。
根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池中有等待的工作线程,就可以开始运行了;否则进入等待队列。
为什么要用线程池:
1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

Java通过Executors提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

1.newCachedThreadPool

/**
	 * 可以缓存线程池
	 */
	public static void Function1() {
		ExecutorService executorService = Executors.newCachedThreadPool();
		for (int i = 0; i < 50; i++) {
			final int index = i;
			try {
				Thread.sleep(100); // 休眠时间越短创建的线程数越多
			} catch (InterruptedException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
			executorService.execute(new Runnable() {

				@Override
				public void run() {
					// TODO Auto-generated method stub
					System.out.println("active count = " + Thread.activeCount()
							+ " index = " + index);
					try {
						Thread.sleep(1000);
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
				}
			});
		}
	}
打印结果

active count = 2 index = 0
active count = 3 index = 1
active count = 4 index = 2
active count = 5 index = 3
active count = 6 index = 4
active count = 7 index = 5
active count = 8 index = 6
active count = 9 index = 7
active count = 10 index = 8
active count = 11 index = 9
active count = 11 index = 10
active count = 11 index = 11
active count = 11 index = 12
active count = 11 index = 13
active count = 11 index = 14
active count = 11 index = 15
active count = 11 index = 16
active count = 11 index = 17
active count = 11 index = 18
active count = 11 index = 19
active count = 11 index = 20
active count = 11 index = 21
active count = 11 index = 22
active count = 11 index = 23
active count = 11 index = 24
active count = 11 index = 25
active count = 11 index = 26
active count = 11 index = 27
active count = 11 index = 28
active count = 11 index = 29
active count = 11 index = 30
active count = 11 index = 31
active count = 11 index = 32
active count = 11 index = 33
active count = 11 index = 34
active count = 11 index = 35
active count = 11 index = 36
active count = 11 index = 37
active count = 11 index = 38
active count = 11 index = 39
active count = 11 index = 40
active count = 11 index = 41
active count = 11 index = 42
active count = 11 index = 43
active count = 11 index = 44
active count = 11 index = 45
active count = 11 index = 46
active count = 11 index = 47
active count = 11 index = 48
active count = 10 index = 49
从打印消息来看开始线程数在增加,后来稳定,可以修改休眠时间,休眠时间越短创建的线程数就越多,因为前面的还没执行完,线程池中没有可以执行的就需要创建;如果把休眠时间加大,创建的线程数就会少

2.newFixedThreadPool  根据传入的参数创建线程数目

/**
	 * 定长线程池
	 */
	public static void Function2() {
		ExecutorService executorService = Executors.newFixedThreadPool(3);
		for (int i = 0; i < 30; i++) {
			final int index = i;
			executorService.execute(new Runnable() {
				@Override
				public void run() {
					try {
						System.out.println("index = " + index
								+ "  thread count = " + Thread.activeCount());
						Thread.sleep(2000);
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
				}
			});
		}
	}
3.newScheduledThreadPool

/**
	 * 定长线程池,可做延时
	 */
	public static void Function3() {
		ScheduledExecutorService executorService = Executors
				.newScheduledThreadPool(5);
		executorService.schedule(new Runnable() {

			@Override
			public void run() {
				System.out.println("delay 3 seconds" + "  thread count = "
						+ Thread.activeCount());
			}
		}, 3, TimeUnit.SECONDS);
	}

	/**
	 * 定期执行,可以用来做定时器
	 */
	public static void Function4() {
		ScheduledExecutorService executorService = Executors
				.newScheduledThreadPool(3);
		executorService.scheduleAtFixedRate(new Runnable() {
			@Override
			public void run() {
				System.out
						.println("delay 1 seconds, and excute every 3 seconds"
								+ "  thread count = " + Thread.activeCount());
			}
		}, 1, 3, TimeUnit.SECONDS);
	}
打印结果

delay 1 seconds, and excute every 3 seconds  thread count = 2
delay 1 seconds, and excute every 3 seconds  thread count = 3
delay 1 seconds, and excute every 3 seconds  thread count = 4
delay 1 seconds, and excute every 3 seconds  thread count = 4
delay 1 seconds, and excute every 3 seconds  thread count = 4
delay 1 seconds, and excute every 3 seconds  thread count = 4
delay 1 seconds, and excute every 3 seconds  thread count = 4
delay 1 seconds, and excute every 3 seconds  thread count = 4
delay 1 seconds, and excute every 3 seconds  thread count = 4
4.newSingleThreadExecutor这个最简单

/**
	 * 单例线程
	 */
	public static void Function5() {
		ExecutorService singleThreadExecutor = Executors
				.newSingleThreadExecutor();
		for (int i = 0; i < 5; i++) {
			final int index = i;
			singleThreadExecutor.execute(new Runnable() {

				@Override
				public void run() {
					try {
						System.out.println("index = " + index
								+ "  thread count = " + Thread.activeCount());
						Thread.sleep(1000);
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
				}
			});
		}
	}
打印结果:

index = 0  thread count = 2
index = 1  thread count = 2
index = 2  thread count = 2
index = 3  thread count = 2
index = 4  thread count = 2
只创建了一个线程