首页 > 代码库 > shortpath1364差分约束
shortpath1364差分约束
差分约束
题目大意:现在假设有一个这样的序列,S={a1,a2,a3,a4...ai...at}
其中ai=a*si,其实这句可以忽略不看
现在给出一个不等式,使得ai+a(i+1)+a(i+2)+...+a(i+n)<ki或者是ai+a(i+1)+a(i+2)+...+a(i+n)>ki
首先给出两个数分别代表S序列有多少个,有多少个不等式
不等式可以这样描述
给出四个参数第一个数i可以代表序列的第几项,然后给出n,这样前面两个数就可以描述为ai+a(i+1)+...a(i+n),即从i到n的连续和,再给出一个符号和一个ki
当符号为gt代表‘>’,符号为lt代表‘<‘
那么样例可以表示
1 2 gt 0
a1+a2+a3>0
2 2 lt 2
a2+a3+a4<2
最后问你所有不等式是否都满足条件,若满足输出lamentable kingdom,不满足输出successful conspiracy,这里要注意了,不要搞反了
解题思路:一个典型的差分约束,很容易推出约束不等式
首先设Si=a1+a2+a3+...+ai
那么根据样例可以得出
S3-S0>0---->S0-S3<=-1
S4-S1<2---->S4-S1<=1
因为差分约束的条件是小于等于,所以我们将ki-1可以得到一个等于号
那么通式可以表示为
a b gt c
S[a-1]-s[a+b]<=-ki-1
a b lt c
S[a+b]-S[a-1]<=ki-1
那么根据差分约束建图,加入这些有向边
gt: <a+b,a-1>=-ki-1
lt: <a-1,a+b>=ki-1
再根据bellman_ford判断是否有无负环即可
只有所有不等式都满足条件时(p条件),不会出现负环(q结论)。
P>q, !q->p
若出现负环了(!q),说明矛盾,则这个序列不满足所有的不等式(!p)。