首页 > 代码库 > 网络硬时间戳在何时何地打的?
网络硬时间戳在何时何地打的?
分为几个部分阐述
1、linux时间系统
2、网卡工作原理
3、socket编程里的硬件时间戳选项
4、网络硬时间戳是什么时候打?在哪儿打的?
一、linux时间系统
陈莉君《深入分析linux内核源码》一篇很不错的文章:linux时间系统
linux有两个时钟源,分别是RTC和OS时钟。
RTC独立于操作系统,由电池供电,即使系统断电它也能维护自己的时钟。LINUX系统启动时从其中获得时间初始值。
OS时钟从可编程计数器(如intel的8524)获得时钟。如图1所示的输出脉冲是OS时钟工作的基础,因为是由它产生时钟中断的。
图1 8524工作示意图
图1 时钟机制
二、网卡工作原理
发送数据时,网卡首先侦听介质上是否有载波(载波由电压指示),如果有,则认为其他站点正在传送信息,继续侦听介质。一旦通信介质在一定时间段内(称为帧间缝隙IFG=9.6微秒)是安静的,即没有被其他站点占用,则开始进行帧数据发送,同时继续侦听通信介质,以检测冲突。在发送数据期间。 如果检测到冲突,则立即停止该次发送,并向介质发送一个“阻塞”信号,告知其他站点已经发生冲突,从而丢弃那些可能一直在接收的受到损坏的帧数据,并等待一段随机时间(CSMA/CD确定等待时间的算法是二进制指数退避算法)。在等待一段随机时间后,再进行新的发送。如果重传多次后(大于16次)仍发生冲突,就放弃发送。 接收时,网卡浏览介质上传输的每个帧,如果其长度小于64字节,则认为是冲突碎片。如果接收到的帧不是冲突碎片且目的地址是本地地址,则对帧进行完整性校验,如果帧长度大于1518字节(称为超长帧,可能由错误的LAN驱动程序或干扰造成)或未能通过CRC校验,则认为该帧发生了畸变。通过校验的帧被认为是有效的,网卡将它接收下来进行本地处理。
三、socket编程里的硬件时间戳选项
参考文章:硬件时间戳socket选项解析
The existing interfaces for getting network packages time stamped are:
* SO_TIMESTAMP
Generate time stamp for each incoming packet using the (not necessarily monotonous!) system time. Result is returned via recv_msg() in a control message as timeval_r(usec resolution). * SO_TIMESTAMPNS
Same time stamping mechanism as SO_TIMESTAMP, but returns result as timespec (nsec resolution). * IP_MULTICAST_LOOP + SO_TIMESTAMP[NS]
Only for multicasts: approximate send time stamp by receiving the looped packet and using its receive time stamp. The following interface complements the existing ones: receive time stamps can be generated and returned for arbitrary packets and much closer to the point where the packet is really sent. Time stamps can be generated in software (as before) or in hardware (if the hardware has such a feature).
SO_TIMESTAMPING:
Instructs the socket layer which kind of information is wanted. The parameter is an integer with some of the following bits set. Setting other bits is an error and doesn‘t change the current state.
SOF_TIMESTAMPING_TX_HARDWARE:
try to obtain send time stamp in hardware SOF_TIMESTAMPING_TX_SOFTWARE: if SOF_TIMESTAMPING_TX_HARDWARE is off or fails, then do it in software SOF_TIMESTAMPING_RX_HARDWARE: return the original, unmodified time stamp as generated by the hardware SOF_TIMESTAMPING_RX_SOFTWARE: if SOF_TIMESTAMPING_RX_HARDWARE is off or fails, then do it in software SOF_TIMESTAMPING_RAW_HARDWARE: return original raw hardware time stamp SOF_TIMESTAMPING_SYS_HARDWARE: return hardware time stamp transformed to the system time base SOF_TIMESTAMPING_SOFTWARE: return system time stamp generated in software SOF_TIMESTAMPING_TX/RX determine how time stamps are generated. SOF_TIMESTAMPING_RAW/SYS determine how they are reported in the following control message:
struct scm_timestamping {
struct timespec systime; struct timespec hwtimetrans; struct timespec hwtimeraw; }; recvmsg() can be used to get this control message for regular incoming packets. For send time stamps the outgoing packet is looped back to the socket‘s error queue with the send time stamp(s) attached. It can be received with recvmsg(flags=MSG_ERRQUEUE). The call returns the original outgoing packet data including all headers preprended down to and including the link layer, the scm_timestamping control message and a sock_extended_err control message with ee_errno==ENOMSG and ee_origin==SO_EE_ORIGIN_TIMESTAMPING. A socket with such a pending bounced packet is ready for reading as far as select() is concerned. If the outgoing packet has to be fragmented, then only the first fragment is time stamped and returned to the sending socket.
All three values correspond to the same event in time, but were generated in different ways. Each of these values may be empty (= all zero), in which case no such value was available. If the application is not interested in some of these values, they can be left blank to avoid the potential overhead of calculating them.
systime is the value of the system time at that moment. This corresponds to the value also returned via SO_TIMESTAMP[NS]. If the time stamp was generated by hardware, then this field is empty. Otherwise it is filled in if SOF_TIMESTAMPING_SOFTWARE is set.
hwtimeraw is the original hardware time stamp. Filled in if SOF_TIMESTAMPING_RAW_HARDWARE is set. No assumptions about its relation to system time should be made.
hwtimetrans is the hardware time stamp transformed so that it corresponds as good as possible to system time. This correlation is not perfect; as a consequence, sorting packets received via different NICs by their hwtimetrans may differ from the order in which they were received. hwtimetrans may be non-monotonic even for the same NIC. Filled in if SOF_TIMESTAMPING_SYS_HARDWARE is set. Requires support by the network device and will be empty without that support.
SIOCSHWTSTAMP:
Hardware time stamping must also be initialized for each device driver that is expected to do hardware time stamping. The parameter is defined in /include/linux/net_tstamp.h as:
struct hwtstamp_config {
int flags; int tx_type; int rx_filter; }; Desired behavior is passed into the kernel and to a specific device by calling ioctl(SIOCSHWTSTAMP) with a pointer to a struct ifreq whose ifr_data points to a struct hwtstamp_config. The tx_type and rx_filter are hints to the driver what it is expected to do. If the requested fine-grained filtering for incoming packets is not supported, the driver may time stamp more than just the requested types of packets.
A driver which supports hardware time stamping shall update the struct with the actual, possibly more permissive configuration. If the requested packets cannot be time stamped, then nothing should be changed and ERANGE shall be returned (in contrast to EINVAL, which indicates that SIOCSHWTSTAMP is not supported at all).
Only a processes with admin rights may change the configuration. User space is responsible to ensure that multiple processes don‘t interfere with each other and that the settings are reset.
enum {
HWTSTAMP_TX_OFF,
HWTSTAMP_TX_ON, }; enum {
HWTSTAMP_FILTER_NONE,
HWTSTAMP_FILTER_ALL,
HWTSTAMP_FILTER_SOME,
HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
}; DEVICE IMPLEMENTATION
A driver which supports hardware time stamping must support the SIOCSHWTSTAMP ioctl and update the supplied struct hwtstamp_config with the actual values as described in the section on SIOCSHWTSTAMP.
Time stamps for received packets must be stored in the skb. To get a pointer to the shared time stamp structure of the skb call skb_hwtstamps(). Then set the time stamps in the structure:
struct skb_shared_hwtstamps {
ktime_t hwtstamp; ktime_t syststamp; }; Time stamps for outgoing packets are to be generated as follows: - In hard_start_xmit(), check if skb_tx(skb)->hardware is set no-zero.
If yes, then the driver is expected to do hardware time stamping. - If this is possible for the skb and requested, then declare that the driver is doing the time stamping by setting the field skb_tx(skb)->in_progress non-zero. You might want to keep a pointer to the associated skb for the next step and not free the skb. A driver not supporting hardware time stamping doesn‘t do that. A driver must never touch sk_buff::tstamp! It is used to store software generated time stamps by the network subsystem. - As soon as the driver has sent the packet and/or obtained a hardware time stamp for it, it passes the time stamp back by calling skb_hwtstamp_tx() with the original skb, the raw hardware time stamp. skb_hwtstamp_tx() clones the original skb and adds the timestamps, therefore the original skb has to be freed now. If obtaining the hardware time stamp somehow fails, then the driver should not fall back to software time stamping. The rationale is that this would occur at a later time in the processing pipeline than other software time stamping and therefore could lead to unexpected deltas between time stamps. - If the driver did not call set skb_tx(skb)->in_progress, then dev_hard_start_xmit() checks whether software time stamping is wanted as fallback and potentially generates the time stamp.