首页 > 代码库 > ZOJ 3209
ZOJ 3209
精确覆盖
#include <iostream>#include <cstdio>#include <cstring>#include <algorithm>#include <vector>using namespace std;const int maxn=920;const int maxnode=920*550;const int maxr=550;int ans;struct DLX{ int n , sz; // 行数,节点总数 int S[maxn]; // 各列节点总数 int row[maxnode],col[maxnode]; // 各节点行列编号 int L[maxnode],R[maxnode],U[maxnode],D[maxnode]; // 十字链表 int ansd; // 解 void init(int n ) { this->n = n ; for(int i = 0 ; i <= n; i++ ) { U[i] = i ; D[i] = i ; L[i] = i - 1; R[i] = i + 1; } R[n] = 0 ; L[0] = n; sz = n + 1 ; memset(S,0,sizeof(S)); } void addRow(int r,vector<int> c1) { int first = sz; for(int i = 0 ; i < c1.size(); i++ ){ int c = c1[i]; L[sz] = sz - 1 ; R[sz] = sz + 1 ; D[sz] = c ; U[sz] = U[c]; D[U[c]] = sz; U[c] = sz; row[sz] = r; col[sz] = c; S[c] ++ ; sz ++ ; } R[sz - 1] = first ; L[first] = sz - 1; } // 顺着链表A,遍历除s外的其他元素 #define FOR(i,A,s) for(int i = A[s]; i != s ; i = A[i]) void remove(int c){ L[R[c]] = L[c]; R[L[c]] = R[c]; FOR(i,D,c) FOR(j,R,i) {U[D[j]] = U[j];D[U[j]] = D[j];--S[col[j]];} } void restore(int c){ FOR(i,U,c) FOR(j,L,i) {++S[col[j]];U[D[j]] = j;D[U[j]] = j; } L[R[c]] = c; R[L[c]] = c; } void dfs(int d){ if(d>=ans) return ; if(R[0] == 0 ){ ansd = d; ans=min(ans,ansd); } // 找S最小的列c int c = R[0] ; FOR(i,R,0) if(S[i] < S[c]) c = i; remove(c); FOR(i,D,c){ FOR(j,R,i) remove(col[j]); dfs(d + 1); FOR(j,L,i) restore(col[j]); } restore(c); } bool solve(){ dfs(0); }};DLX solver;int main(){ int T; int n,m ,p; int xx1,xx2,yy1,yy2; vector<int>colmuns; scanf("%d",&T); while(T--){ ans=(1<<30); scanf("%d%d%d",&n,&m,&p); solver.init(n*m); for(int k=1;k<=p;k++){ colmuns.clear(); scanf("%d%d%d%d",&xx1,&yy1,&xx2,&yy2); for(int i=xx1+1;i<=xx2;i++){ for(int j=yy1+1;j<=yy2;j++){ colmuns.push_back((i-1)*m+j); } } solver.addRow(k,colmuns); } solver.solve(); if(ans==(1<<30)) printf("-1\n"); else printf("%d\n",ans); } return 0;}
ZOJ 3209
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。