首页 > 代码库 > HDU 1394 Minimum Inversion Number (线段树)
HDU 1394 Minimum Inversion Number (线段树)
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
ZOJ Monthly, January 2003
求最小逆序对数,什么事逆序数呢? 这是对于两个数来说的,例如 2 1, 2在1的前面,2却比1大,那么就是一对逆序对数,
题目求将序列头一个依次放到末尾,这么多序列中逆序对数最少的输出来
首先数据太大,应该用线段树,线段树里面存储的是le 到 ri 的数的数量,例如输入 3,我们就要查询 0到3有多少个已经存在的数
,废话不多说了,直接看代码吧
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define L(x) (x<<1) #define R(x) (x<<1|1) #define MID(x,y) ((x+y)>>1) using namespace std; #define N 5005 int a[N]; struct stud{ int le,ri; int va; }f[N*4]; void build(int pos,int le,int ri) { f[pos].le=le; f[pos].ri=ri; f[pos].va=0; if(le==ri) return ; int mid=MID(le,ri); build(L(pos),le,mid); build(R(pos),mid+1,ri); } void update(int pos,int le) { f[pos].va++; if(f[pos].le==le&&f[pos].ri==le) return ; int mid=MID(f[pos].le,f[pos].ri); if(mid>=le) update(L(pos),le); else update(R(pos),le); } int query(int pos,int le,int ri) { if(f[pos].le>=le&&f[pos].ri<=ri) return f[pos].va; int mid=MID(f[pos].le,f[pos].ri); if(mid>=ri) return query(L(pos),le,ri); else if(mid<le) return query(R(pos),le,ri); return query(L(pos),le,mid)+query(R(pos),mid+1,ri); } int main() { int n,m,i; while(~scanf("%d",&n)) { int ans=0; build(1,0,n); for(i=0;i<n;i++) { scanf("%d",&a[i]); ans+=query(1,a[i],n-1); update(1,a[i]); } int temp=ans; for(i=0;i<n;i++) { temp=temp-a[i]+n-a[i]-1; if(temp<ans) ans=temp; } printf("%d\n",ans); } return 0; }
HDU 1394 Minimum Inversion Number (线段树)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。