首页 > 代码库 > HDU 1394 Minimum Inversion Number

HDU 1394 Minimum Inversion Number

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10477    Accepted Submission(s): 6464


Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

 

Output
For each case, output the minimum inversion number on a single line.
 

 

Sample Input
101 3 6 9 0 8 5 7 4 2
 

 

Sample Output
16
 

 

Author
CHEN, Gaoli
 

 

Source
ZOJ Monthly, January 2003
 

 

Recommend
Ignatius.L
 
 
题目的意思就是说给你一个序列,求这个序列的逆序数的对数,然后将第一个元素放到最后,从而生成了一个新的序列,直到最后一个元素到第一个时停止,求生成的序列中,最少的逆序数的对数是多少。
 
我谈谈我的做法
1.暴力,每次找出新序列的逆序数的对数,然后看看是不是最小值,最后输出最小值即可
但这里要点技巧,在寻找新的序列的逆序数的对数时,没有必要去扫一遍出结果。
可以想想,因为序列的数字是从0~n-1连续的,那么当第一个数移到最后去的时候,原来比这个数大的数字变成了逆序数,比这个数小的数就不是逆序数了
举个例子:
3 2 4 5 
本来 3 2是逆序数,3 4,3 5不是逆序数,当序列变成2 4 5 3时,原来的3 4变成了4 3是逆序数,2 3就不是逆序数了
 
所以在原有的序列中比第一个元素要小的数个数为(即逆序数的对数)  low[a[i]]=a[i],所以可以推出比第一个元素要大的数的个数为up[a[i]]=n-1-a[i]
那么新的序列中逆序数的对数是  sum=sum-low[a[i]]+up[a[i]]=sum-a[i]+(n-1-a[i])
 
暴力的代码
 1 #include<cstdio> 2 #include<cstring> 3 #include<stdlib.h> 4 #include<algorithm> 5 using namespace std; 6 int a[5005]; 7 int main() 8 { 9     int n,i,j;10     while(scanf("%d",&n)!=EOF)11     {12         int sum=0;13         for(i=0;i<n;i++)14         {15             scanf("%d",&a[i]);16             for(j=0;j<i;j++)17                 if(a[j]>a[i])18                     sum++;19         }20         int ans=sum;21         for(i=0;i<n;i++)22         {23             sum=sum-a[i]+(n-a[i]-1);24             if(sum<ans)25                 ans=sum;26         }27         printf("%d\n",ans);28     }29     return 0;30 }
View Code

 

2.线段树

同样的一开始也是要找出逆序数的对数,暴力方法是从第一个数到现在这个数扫一遍查找,线段树的方法就是用线段树去查询,会更快

后面对新序列的逆序数对数的处理时相同的

线段树的代码

 

 1 #include<cstdio> 2 #include<cstring> 3 #include<stdlib.h> 4 #include<algorithm> 5 using namespace std; 6 struct node 7 { 8     int l,r; 9     int num;10     int mid()11     {12         return (l+r)>>1;13     }14 }a[5000*4];15 int b[5005];16 void btree(int l,int r,int step)17 {18     a[step].l=l;19     a[step].r=r;20     a[step].num=0;21     if(l==r)  return ;22     int mid=a[step].mid();23     btree(l,mid,step*2);24     btree(mid+1,r,step*2+1);25 }26 27 void ptree(int step,int vis)28 {29     a[step].num++;30     if(a[step].l==a[step].r)  return ;31     int mid=a[step].mid();32     if(vis>mid)33         ptree(step*2+1,vis);34     else35         ptree(step*2,vis);36 }37 38 int fintree(int step,int x,int y)39 {40     if(a[step].l==x&&a[step].r==y)41         return a[step].num;42     int mid=a[step].mid();43     if(x>mid)44         return fintree(step*2+1,x,y);45     else if(y<=mid)46         return fintree(step*2,x,y);47     else48         return fintree(step*2,x,mid)+fintree(step*2+1,mid+1,y);49 }50 int main()51 {52     int n,i,j;53     while(scanf("%d",&n)!=EOF)54     {55         int ans=0;56         btree(0,n-1,1);57         for(i=0;i<n;i++)58         {59             scanf("%d",&b[i]);60             ans+=fintree(1,b[i],n-1);61             ptree(1,b[i]);62         }63         int minn=ans;64         for(i=0;i<n;i++)65         {66             ans=ans-b[i]+(n-1-b[i]);67             if(minn>ans) minn=ans;68         }69         printf("%d\n",minn);70     }71     return 0;72 }
View Code