首页 > 代码库 > 1394-Minimum Inversion Number

1394-Minimum Inversion Number

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20162    Accepted Submission(s): 12110


Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

 

Output
For each case, output the minimum inversion number on a single line.
 

 

Sample Input
101 3 6 9 0 8 5 7 4 2
 

 

Sample Output
16
 

 

Author
CHEN, Gaoli
逆序数的概念:在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那末它们就称为一个逆序。
一个排列中逆序的总数就称为这个排列的逆序数。
思路:先暴力求出开始时的逆序数,然后会有一个性质:每次把末尾的数掉到序列前面时,减少的逆序对数为n-1-a[i] ,增加的逆序对数为a[i] ,所以求出其他情况时的逆序数。
 1 #include<cstdio> 2  3 int t[5010]; 4 int n,ans,sum; 5 int main() 6 { 7     while (scanf("%d",&n)!=EOF) 8     { 9         sum = 0;10         for (int i=1; i<=n; ++i)11             scanf("%d",&t[i]);12         for (int i=1; i<n; ++i)13             for (int j=i+1; j<=n; ++j)14                 if (t[i]>t[j]) sum++;15         ans = sum;16         for (int i=n; i>=1; --i)17         {18             sum -= n-1-t[i];19             sum += t[i];20             if (sum < ans) ans = sum;21         }22         printf("%d\n",ans);23     }24     return 0;25 }

 

1394-Minimum Inversion Number