首页 > 代码库 > [hdu1394]Minimum Inversion Number(树状数组)
[hdu1394]Minimum Inversion Number(树状数组)
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18395 Accepted Submission(s): 11168
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
101 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
ZOJ Monthly, January 2003
Recommend
Ignatius.L
更更更
隔壁YNY看到就直接暴力,当然T了(哈哈哈一起笑他)
动动脑子,题目说是一个环
那么每转一次,就相当于把第一个数放到最后面
考虑第一个数对原有答案的贡献是a[1]-1,也就是小于它的个数(数据是1到n的排列)
最后一个数对原答案的贡献相反
那么移动后当前逆序对数就要减去比第一个数小的个数,再加上比它大的数的个数
这样我们求出一次移动后的逆序对数
这时候我们发现下一次移动直接修改答案就好,不需要改动树状数组
推出式子ans+=n-a[i]-(a[i]-1)
1 #include<stdio.h> 2 #include<stdlib.h> 3 #include<string.h> 4 #define LL long long 5 int bit[5050]={0},n,a[5050]; 6 inline LL min(LL a,LL b){ 7 return a<b?a:b; 8 } 9 inline int lb(int x){10 return x&(-x);11 }12 inline LL q(int x){13 LL ans=0;14 while(x){15 ans+=bit[x];16 x-=lb(x);17 }18 return ans;19 }20 inline int c(int x){21 while(x<=n){22 bit[x]++;23 x+=lb(x);24 }25 return 0;26 }27 int main(){28 while(scanf("%d",&n)!=EOF){29 memset(bit,0,sizeof(bit));30 LL ans=0;31 for(int i=1;i<=n;i++){32 scanf("%d",&a[i]);33 a[i]++;34 ans+=q(n)-q(a[i]);35 c(a[i]);36 }37 LL mn=ans;38 mn=min(mn,ans);39 for(int i=1;i<=n;i++){40 ans+=n-a[i]-(a[i]-1);41 mn=min(mn,ans);42 }43 printf("%lld\n",mn);44 }45 46 return 0;47 }
[hdu1394]Minimum Inversion Number(树状数组)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。