首页 > 代码库 > HDU3507 Print Article
HDU3507 Print Article
Print Article
Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Problem Description
Zero has an old printer that doesn‘t work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
Output
A single number, meaning the mininum cost to print the article.
Sample Input
5 559575
Sample Output
230
Author
Xnozero
Source
2010 ACM-ICPC Multi-University Training Contest(7)——Host by HIT
Recommend
zhengfeng
裸的斜率dp。。注意不等号方向。。样例数据挺好的。。不管你是什么符号都输出230..23333
1 #include<cstdio> 2 #include<cstdlib> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 const int N = 500100; 7 #define For(i,n) for(int i=1;i<=n;i++) 8 #define Rep(i,l,r) for(int i=l;i<=r;i++) 9 10 int n,M,sum[N],dp[N],q[N];11 // dp[i] = max{dp[j] + (sj-si)^2 + M}12 //-> dp[k] - dp[j] + sk^2 - sj^2 13 // -------------------------- > 2si 时 j比k优 14 // sk - sj15 16 int Up(int i,int j){17 return dp[i]+sum[i]*sum[i]-(dp[j]+sum[j]*sum[j]);18 }19 20 int Down(int i,int j){21 return sum[i]-sum[j]; 22 }23 24 void DP(){25 int l=0,r=1;26 For(i,n){27 while(l+1<r && Up(q[l],q[l+1])>=2*sum[i]*Down(q[l],q[l+1])) l++;28 dp[i]=dp[q[l]] + (sum[i]-sum[q[l]])*(sum[i]-sum[q[l]]) + M;29 while(l+1<r && Up(q[r-2],q[r-1])*Down(q[r-1],i)>=Up(q[r-1],i)*Down(q[r-2],q[r-1])) --r;30 q[r++]=i;31 } 32 printf("%d\n",dp[n]);33 }34 35 int main(){36 while(scanf("%d%d",&n,&M)!=EOF){37 q[0]=dp[0]=0;38 For(i,n){39 scanf("%d",&sum[i]);40 sum[i]+=sum[i-1];41 }42 DP();43 }44 return 0;45 }
HDU3507 Print Article
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。