首页 > 代码库 > 41. Unique Binary Search Trees && Unique Binary Search Trees II

41. Unique Binary Search Trees && Unique Binary Search Trees II

Unique Binary Search Trees

Given n, how many structurally unique BST‘s (binary search trees) that store values 1...n?

For example, Given n = 3, there are a total of 5 unique BST‘s.

   1         3     3      2      1    \       /     /      / \           3     2     1      1   3      2    /     /       \                    2     1         2                 3
思路: f(n) = Σi=1n f(n-i)*f(i-1), 其中 f(0) = f(1) = 1; 利用动归记下之前的 f(2)~f(n-1)即可。
class Solution {public:    int numTrees(int n) {        vector<int> f(n+1, 0);        f[0] = f[1] = 1;        for(int v = 2; v <= n; ++v)             for(int pos = 1; pos <= v; ++pos)                f[v] += f[pos-1] * f[v-pos];        return f[n];    }};

Unique Binary Search Trees II

Given n, generate all structurally unique BST‘s (binary search trees) that store values 1...n.

For example, Given n = 3, your program should return all 5 unique BST‘s shown below.

1         3     3      2      1    \       /     /      / \           3     2     1      1   3      2    /     /       \                    2     1         2                 3
思路:分别以 1~n 为根节点,左右子树根的集合数量相乘,递归,依次得出结果。
/** * Definition for binary tree * struct TreeNode { *     int val; *     TreeNode *left; *     TreeNode *right; *     TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */vector<TreeNode *> generateTreesCore(int start, int end) {    vector<TreeNode *> vec;    if(start > end) { vec.push_back(NULL); return vec; }    for(int cur = start; cur <= end; ++cur) {        vector<TreeNode *> left = generateTreesCore(start, cur-1);        vector<TreeNode *> right = generateTreesCore(cur+1, end);        for(size_t i = 0; i < left.size(); ++i) {            for(size_t j = 0; j < right.size(); ++j) {                TreeNode *root = new TreeNode(cur);                root->left = left[i];                root->right = right[j];                vec.push_back(root);            }        }    }    return vec;}class Solution {public:    vector<TreeNode *> generateTrees(int n) {        return generateTreesCore(1, n);    }};

 

           

41. Unique Binary Search Trees && Unique Binary Search Trees II