首页 > 代码库 > CF461B Appleman and Tree (树DP)

CF461B Appleman and Tree (树DP)

CF462D

Codeforces Round #263 (Div. 2) D

Codeforces Round #263 (Div. 1) B

B. Appleman and Tree
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.

Consider a set consisting of k (0 ≤ k < n) edges of Appleman‘s tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices.

Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).

Input

The first line contains an integer n (2  ≤ n ≤ 105) — the number of tree vertices.

The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.

The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.

Output

Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).

Sample test(s)
Input
3
0 0
0 1 1
Output
2
Input
6
0 1 1 0 4
1 1 0 0 1 0
Output
1
Input
10
0 1 2 1 4 4 4 0 8
0 0 0 1 0 1 1 0 0 1
Output
27

题意:有n个结点的树,结点编号0~n-1,0为根,分别给出1~n-1的父亲,再给出0~n-1各个结点的颜色(0为白,1为黑),要将其中一些边切掉,使每个联通块有且只有1个黑点,求切法种类数。

题解:树形DP。

从根DFS,f[x][0]表示对{x点和它的子树、x点连接父亲结点的边}这一整坨,有多少种方案使得x这个联通块没黑点(x是黑点的时候这个也不为0,是把x的父边切掉的种类数)

f[x][1]是这个联通块有黑点的种类数。

 

太难了!怪不得大家都掉分飞起,虽然题解的代码看起来很短,我根本想不出来啊看了半天还是不懂啊!

具体还是看代码吧,写了点注释,这个统计方法太碉了,我也弄得不是很清楚,算了日后再说。

代码:

 1 //#pragma comment(linker, "/STACK:102400000,102400000") 2 #include<cstdio> 3 #include<cmath> 4 #include<iostream> 5 #include<cstring> 6 #include<algorithm> 7 #include<cmath> 8 #include<map> 9 #include<set>10 #include<stack>11 #include<queue>12 using namespace std;13 #define ll long long14 #define usll unsigned ll15 #define mz(array) memset(array, 0, sizeof(array))16 #define minf(array) memset(array, 0x3f, sizeof(array))17 #define REP(i,n) for(i=0;i<(n);i++)18 #define FOR(i,x,n) for(i=(x);i<=(n);i++)19 #define RD(x) scanf("%d",&x)20 #define RD2(x,y) scanf("%d%d",&x,&y)21 #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)22 #define WN(x) printf("%d\n",x);23 #define RE  freopen("D.in","r",stdin)24 #define WE  freopen("1biao.out","w",stdout)25 #define mp make_pair26 #define pb push_back27 28 const int maxn=111111;29 const int MOD=1e9+7;30 31 int n;32 int a[maxn];33 34 struct Edge {35     int next,v;36 } e[2*maxn];37 int en=0;38 int head[maxn];39 40 void add(int x,int y) {41     e[en].v=y;42     e[en].next=head[x];43     head[x]=en++;44 }45 46 bool u[maxn];47 ll f[maxn][2];///f[x][j] j=1表示x所在联通块有黑点,0表示无黑店 的种类数,包括x连接父亲的边和子树所有的边48 void dfs(int x){49     //printf("[in %d]",x);50     int i;51     u[x]=1;52     f[x][0]=1;53     f[x][1]=0;///先假设当前点是个白点54     for(i=head[x]; i!=-1; i=e[i].next) {55         if(!u[e[i].v]) {56             dfs(e[i].v);57             f[x][1]=(f[x][1]*f[e[i].v][0] + f[x][0]*f[e[i].v][1])%MOD;///有黑点的情况,先用已经统计的有黑点的情况乘一发儿子没黑点的情况,然后用已经统计的没黑点的情况乘一发儿子有黑点的情况58             f[x][0]=f[x][0]*f[e[i].v][0]%MOD;///没黑点的情况直接乘儿子没黑点的情况59         }60     }61     u[x]=0;62     ///下面是对x点的父边的处理63     if(a[x]==0)f[x][0]=(f[x][0]+f[x][1])%MOD;///x是白点,儿子要是有黑点,砍了x的父边就是没黑点,所以没黑点(f[x][0])的情况要加上有黑点的情况(f[x][1])64     else f[x][1]=f[x][0];///x点是黑点,那不砍父边的情况(f[x][1])只有让x的儿子都不黑,砍父边的情况(f[x][0])也是x的儿子都不黑,因为x自己黑嘛,儿子再黑就连到一起了65     //printf("[out %d,flag=%d,re=%I64d,a[x]=%d]\n",x,flag,re,a[x]);66 }67 68 69 ll farm() {70     if(n==1)return 1;71     mz(u);72     dfs(0);73     return f[0][1];74 }75 76 int main() {77     int i;78     int x;79     RD(n);80     memset(head,-1,sizeof(head));81     en=0;82     REP(i,n-1) {83         scanf("%d",&x);84         add(i+1,x);85         add(x,i+1);86     }87     for(i=0; i<n; i++)88         scanf("%d",&a[i]);89     printf("%I64d",farm());90     return 0;91 }
View Code

 

CF461B Appleman and Tree (树DP)