首页 > 代码库 > 【BZOJ-3110】K大数查询 整体二分 + 线段树

【BZOJ-3110】K大数查询 整体二分 + 线段树

3110: [Zjoi2013]K大数查询

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 6265  Solved: 2060
[Submit][Status][Discuss]

Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

Sample Output

1
2
1

HINT

【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3大的数是 1 。‍

N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint

Source

Solution

树套树裸题..当然整体二分+线段树也可以过..

整体二分就是离散化后二分答案,对于答案有贡献的先加入到线段树,然后对于询问的区间,如果答案偏大,放到左边,答案偏小放到右边,直到最后统计答案。

坑点就是$50000*50000$爆int...多谢discuss里kpm的提醒..

Code

#include<iostream>#include<cstdio>#include<cstring>#include<cmath>#include<algorithm>using namespace std;inline int read(){	int x=0,f=1; char ch=getchar();	while (ch<‘0‘ || ch>‘9‘) {if (ch==‘-‘) f=-1; ch=getchar();}	while (ch>=‘0‘ && ch<=‘9‘) {x=x*10+ch-‘0‘; ch=getchar();}	return x*f;}#define MAXN 50010 int N,M;struct QNode{	int opt,l,r,x,id,ans;	QNode (int O=0,int L=0,int R=0,int X=0,int I=0) {opt=O,l=L,r=R,x=X,id=I;}}Q[MAXN];inline bool cmp(QNode x,QNode y) {return x.id<y.id;}namespace SgtTree{	struct SgtNode{		int l,r; unsigned int tag,sum;	}tree[MAXN<<2];#define lson now<<1#define rson now<<1|1	inline void Update(int now) {tree[now].sum=tree[lson].sum+tree[rson].sum;}	inline void Build(int now,int l,int r)	{		tree[now].l=l,tree[now].r=r;		if (l==r) return;		int mid=(l+r)>>1;		Build(lson,l,mid); Build(rson,mid+1,r);	}	inline void Pushdown(int now)	{		if (!tree[now].tag || tree[now].l==tree[now].r) return;		unsigned int delta=tree[now].tag; 		tree[now].tag=0;		tree[lson].sum+=delta*(tree[lson].r-tree[lson].l+1);		tree[rson].sum+=delta*(tree[rson].r-tree[rson].l+1);		tree[lson].tag+=delta;		tree[rson].tag+=delta;	}	inline void Modify(int now,int L,int R,int delta)	{		int l=tree[now].l,r=tree[now].r;		Pushdown(now);		if (L<=l && R>=r) {tree[now].sum+=(r-l+1)*delta; tree[now].tag+=delta; return;}		int mid=(l+r)>>1;		if (L<=mid) Modify(lson,L,R,delta);		if (R>mid) Modify(rson,L,R,delta);		Update(now);	}	inline unsigned int Query(int now,int L,int R)	{		int l=tree[now].l,r=tree[now].r;		Pushdown(now);		if (L<=l && R>=r) return tree[now].sum;		int mid=(l+r)>>1; unsigned int re=0;		if (L<=mid) re+=Query(lson,L,R);		if (R>mid) re+=Query(rson,L,R);		return re;	}}using namespace SgtTree;QNode ql[MAXN],qr[MAXN];inline void Divide(int L,int R,int l,int r){	if (L>R) return;	if (l==r)		{			for (int i=L; i<=R; i++) 				if (Q[i].opt==2) Q[i].ans=l;			return;		}	int mid=(l+r)>>1,nl=0,nr=0;	for (int i=L; i<=R; i++)		if (Q[i].opt==1)			{				if (Q[i].x<=mid)					Modify(1,Q[i].l,Q[i].r,1),ql[++nl]=Q[i];				else qr[++nr]=Q[i];			}		else 			{				unsigned int rk=Query(1,Q[i].l,Q[i].r);				if (rk>=Q[i].x) 					ql[++nl]=Q[i];				else Q[i].x-=rk,qr[++nr]=Q[i];			}	for (int i=1; i<=nl; i++) if (ql[i].opt==1) Modify(1,ql[i].l,ql[i].r,-1);		for (int i=1; i<=nl; i++) Q[L+i-1]=ql[i];	for (int i=1; i<=nr; i++) Q[L+nl+i-1]=qr[i]; 		Divide(L,L+nl-1,l,mid);	Divide(L+nl,R,mid+1,r);}int ls[MAXN],top;int main(){	N=read(),M=read();	for (int i=1; i<=M; i++)		{			int opt=read(),l=read(),r=read(),x=read();			if (opt==1) ls[++top]=x;			Q[i]=QNode(opt,l,r,x,i);		}	stable_sort(ls+1,ls+top+1); top=unique(ls+1,ls+top+1)-ls-1;		for (int i=1; i<=M; i++) 		if (Q[i].opt==1)			Q[i].x=lower_bound(ls+1,ls+1+top,Q[i].x)-ls,Q[i].x=top-Q[i].x+1;	//	for (int i=1; i<=M; i++)//		printf("%d  %d  %d  %d  %d\n",Q[i].opt,Q[i].l,Q[i].r,Q[i].x,Q[i].id);		Build(1,1,N);			Divide(1,M,1,top);		stable_sort(Q+1,Q+M+1,cmp);	for (int i=1; i<=M; i++)		if (Q[i].opt==2) printf("%d\n",ls[top-Q[i].ans+1]); 	return 0;}

  

【BZOJ-3110】K大数查询 整体二分 + 线段树