首页 > 代码库 > Spoj 6779 Can you answer these queries VII 树链剖分 在树上任意路径的最大子段和 区间修改点权
Spoj 6779 Can you answer these queries VII 树链剖分 在树上任意路径的最大子段和 区间修改点权
题目链接:点击打开链接
题意:
rt。。
在询问时,两端向上爬时记录从深度浅的到深度深的方向上的 (也就是左最大连续子段和)
最后两个点在同一条重链上时合并。
合并时要注意有4种情况, 详见代码。
线段树部分和5相似。
#include <cstdio> #include <iostream> #include <string.h> #include <vector> using namespace std; inline void rd(int &n){ n = 0; bool tmp = 0; char c = getchar(); while((c < '0' || c > '9') && c != '-' ) c = getchar(); if(c == '-') c = getchar(), tmp = 1; while(c >= '0' && c <= '9') n *= 10, n += (c - '0'),c = getchar(); if(tmp) n = -n; } #define N 100100 #define hehe 10001 #define L(x) tree[x].l #define R(x) tree[x].r #define Lson(x) (x<<1) #define Rson(x) (x<<1|1) #define Sum(x) tree[x].sum #define Max(x) tree[x].max #define Lmax(x) tree[x].lmax #define Rmax(x) tree[x].rmax #define Lazy(x) tree[x].lazy #define Siz(x) tree[x].siz() struct node{ int l, r; int mid(){return (l+r)>>1;} int siz(){return r-l+1;} int lmax, rmax, max, sum, lazy; }tree[N<<2]; int n, a[N], Q, fw[N]; void updata_point(int val, int id){Lmax(id) = Rmax(id) = Max(id) = Sum(id) = val * Siz(id);} void push_down(int id){ if(L(id) == R(id))return ; if(Lazy(id)!=hehe) { updata_point(Lazy(id), Lson(id)); updata_point(Lazy(id), Rson(id)); Lazy(Lson(id)) = Lazy(Rson(id)) = Lazy(id); Lazy(id) = hehe; } } void push_up(int id){ if(L(id)==R(id))return ; Lmax(id) = max(Lmax(Lson(id)), Sum(Lson(id)) + Lmax(Rson(id))); Rmax(id) = max(Rmax(Rson(id)), Sum(Rson(id)) + Rmax(Lson(id))); Sum(id) = Sum(Lson(id)) + Sum(Rson(id)); Max(id) = max(max(Max(Lson(id)), Max(Rson(id))), Rmax(Lson(id)) + Lmax(Rson(id))); } void build(int l, int r, int id){ L(id) = l; R(id) = r; Lazy(id) = hehe; if(l == r) { updata_point(a[fw[l]], id); return; } int mid = tree[id].mid(); build(l, mid, Lson(id)); build(mid+1, r, Rson(id)); push_up(id); } void updata(int l, int r, int val, int id){ push_down(id); if(l == L(id) && R(id) == r) { Lazy(id) = val; updata_point(val, id); return ; } int mid = tree[id].mid(); if(mid < l) updata(l, r, val, Rson(id)); else if(r <= mid) updata(l, r, val, Lson(id)); else { updata(l, mid, val, Lson(id)); updata(mid+1, r, val, Rson(id)); } push_up(id); } int query_sum(int l, int r, int id){ push_down(id); if(l == L(id) && R(id) == r) return Sum(id); int mid = tree[id].mid(); if(mid < l) return query_sum(l, r, Rson(id)); else if(r <= mid) return query_sum(l, r, Lson(id)); else return query_sum(l, mid, Lson(id)) + query_sum(mid+1, r, Rson(id)); } int query_L(int l, int r, int id){ if(l == L(id) && R(id) == r) return Lmax(id); int mid = tree[id].mid(); if(mid < l) return query_L(l, r, Rson(id)); else if(r <= mid) return query_L(l, r, Lson(id)); int lans = query_L(l, mid, Lson(id)), rans = query_L(mid+1, r, Rson(id)); return max(lans, query_sum(l, mid, id) + rans); } int query_R(int l, int r, int id){ if(l == L(id) && R(id) == r) return Rmax(id); int mid = tree[id].mid(); if(mid < l) return query_R(l, r, Rson(id)); else if(r <= mid) return query_R(l, r, Lson(id)); int lans = query_R(l, mid, Lson(id)), rans = query_R(mid+1, r, Rson(id)); return max(rans, query_sum(mid+1, r, id) + lans); } int query_l(int l, int r, int id){ push_down(id); if(l == L(id) && R(id) == r) return Lmax(id); int mid = tree[id].mid(); if(mid < l) return query_l(l, r, Rson(id)); else if(r <= mid) return query_l(l, r, Lson(id)); int lans = query_l(l, mid, Lson(id)), rans = query_l(mid+1, r, Rson(id)); return max(lans, Sum(Lson(id)) + rans); } int query_r(int l, int r, int id){ push_down(id); if(l == L(id) && R(id) == r) return Rmax(id); int mid = tree[id].mid(); if(mid < l) return query_r(l, r, Rson(id)); else if(r <= mid) return query_r(l, r, Lson(id)); int lans = query_r(l, mid, Lson(id)), rans = query_r(mid+1, r, Rson(id)); return max(rans, Sum(Rson(id)) + lans); } int query(int l, int r, int id){ push_down(id); if(l == L(id) && R(id) == r)return Max(id); int mid = tree[id].mid(); if(mid < l) return query(l, r, Rson(id)); else if(r<=mid) return query(l, r, Lson(id)); int lans = query(l, mid, Lson(id)), rans = query(mid+1, r, Rson(id)); int ans = max(lans, rans); return max(ans, query_r(l, mid, Lson(id)) + query_l(mid+1, r, Rson(id))); } vector<int>G[N]; int fa[N], son[N], siz[N], dep[N], tree_id; //父节点 重儿子 子树节点数 深度 线段树标号 int w[N], p[N]; //父边在线段树中的标号 节点顶端的点 void dfs(int u, int Father, int deep){ fa[u] = Father; son[u] = 0; dep[u] = deep; siz[u] = 1; for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if(v == Father) continue; dfs(v, u, deep+1); siz[u] += siz[v]; if(siz[v] > siz[son[u]])son[u] = v; } } void Have_p(int u, int Father){ w[u] = ++ tree_id; fw[tree_id] = u; p[u] = Father; if(son[u]) Have_p(son[u], Father); else return ; for(int i = 0; i < G[u].size(); i++) { int v = G[u][i]; if(v == fa[u] || v == son[u])continue; Have_p(v, v); } } void Updata(int l, int r, int val){ int f1 = p[l], f2 = p[r]; while(f1 != f2) { if(dep[f1] < dep[f2]) swap(f1, f2), swap(l, r); updata(w[f1], w[l], val, 1); l = fa[f1]; f1 = p[l]; } if(dep[l] > dep[r]) swap(l, r); updata(w[l], w[r], val, 1); } int Query(int l, int r){ int ans = 0; int f1 = p[l], f2 = p[r], lmax = 0, rmax = 0; while(f1 != f2) { if(dep[f1] < dep[f2]) swap(f1, f2), swap(l, r), swap(lmax, rmax); ans = max(ans, query(w[f1], w[l], 1)); ans = max(ans, max(0,query_R(w[f1], w[l], 1)) + lmax); lmax = max(query_sum(w[f1], w[l], 1) + lmax, query_L(w[f1], w[l], 1)); lmax = max(0, lmax); l = fa[f1]; f1 = p[l]; } if(dep[l] > dep[r]) swap(l, r), swap(lmax, rmax); ans = max(ans, query(w[l], w[r], 1)); ans = max(ans, query_L(w[l], w[r], 1) + lmax); ans = max(ans, query_R(w[l], w[r], 1) + rmax); ans = max(ans, query_sum(w[l], w[r], 1) + lmax + rmax); return ans; } void solve(){ siz[0] = tree_id = 0; dfs(1, 1, 1); Have_p(1, 1); build(1, n, 1); rd(Q); int op, a, b, c; while(Q--) { rd(op); rd(a); rd(b); if(op == 1) printf("%d\n", Query(a, b)); else { rd(c); Updata(a, b, c); } } } void input(){ for(int i = 1; i <= n; i++)rd(a[i]), G[i].clear(); for(int u, v, i = 1; i < n; i++) { rd(u); rd(v); G[u].push_back(v); G[v].push_back(u); } } int main(){ while(~scanf("%d",&n)){ input(); solve(); } return 0; } /* 7 -5 7 4 3 -5 8 -3 1 2 1 3 2 4 2 5 5 6 5 7 8 1 4 3 2 1 1 -3 1 3 4 1 2 6 1 6 2 1 2 7 1 7 5 1 4 7 ans : 10 11 10 10 7 0 10 */
Spoj 6779 Can you answer these queries VII 树链剖分 在树上任意路径的最大子段和 区间修改点权
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。