首页 > 代码库 > 归并排序的应用

归并排序的应用

一、归并排序

算法思路就是把数组分成左右两个部分,然后再进行归并两个有序表

void merge(int* num,int start,int mid,int end,int* copy)
{
	int i = start,m = mid,j = mid+1,n = end,k=start;
	while(i <= m && j <= n)
	{
		if(num[i] < num[j])copy[k++] = num[i++];
		else copy[k++] = num[j++];
	}
	while(i <= m)copy[k++] = num[i++];
	while(j <= n)copy[k++] = num[j++];
	while(--k >= start)
	{
		num[k] = copy[k];
	}
}
int mergeSort(int* num,int start,int end,int* copy)
{
	if(start < end)
	{
		int mid = start + ((end - start)>>1);
		mergeSort(num,start,mid,copy);//分成两个有序数组
		mergeSort(num,mid+1,end,copy);
		merge(num,start,mid,end,copy);//归并两个有序数组
	}
}
void mergeSort(int* num,int length)
{
	int* copy = new int[length];
	mergeSort(num,0,length-1,copy);
}
变形一:leetcode之

Sort List

 

Sort a linked list in O(n log n) time using constant space complexity.

方法一;归并

struct ListNode {
    int val;
    ListNode *next;
    ListNode(int x) : val(x), next(NULL) {}
};

class Solution {
public:
    ListNode *sortList(ListNode *head) 
    {
    	if(!head || !head->next)return head;
    	ListNode* fast = head -> next -> next;//至少有两个节点
    	ListNode* slow = head;
    	while(fast)
    	{
    		fast = fast->next;
    		slow = slow->next;
    		if(!fast)break;
    		fast = fast->next;
    	}
    	ListNode* p = slow -> next;
    	slow -> next = NULL;
    	ListNode* q = sortList(head);
    	p = sortList(p);
    	head = NULL;
    	ListNode* tail = NULL;
    	while(q && p)
    	{
    		if(q->val > p->val)
    		{
    			if(!head)head = tail = p;
    			else
    			{
    				tail->next = p;
    				tail = tail->next;
    			}
    			p = p->next;
    		}
    		else
    		{
    			if(!head)head = tail = q;
    			else
    			{
    				tail->next = q;
    				tail = tail->next;
    			}
    			q = q->next;
    		}
    	}
    	if(p)
    	{
    		if(!head)head = tail = p;
    		tail->next = p;
    	}
    	if(q)
    	{
    		if(!head)head = tail = q;
    		else tail->next = q;
    	}
    	return head;
    }
};
方法二:快排,具体参考这里

剑指offer之数组中的逆序对

在数组中的两个数如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对,输入一个数组,求出这个数组中逆序对的总数

方法:边归并,边计数

void merge(int* data,int start,int mid,int end,int* tmp,int& count)
{
	int i = mid,m = start,j = end,n = mid+1,k = end;
	while(i >= m && j >= n)
	{
		if(data[i] > data[j])
		{
			count += j - n + 1;
			tmp[k--] = data[i--];
		}
		else
		{
			tmp[k--] = data[j--];
		}
	}
	while(i >= m)tmp[k--] = data[i--];
	while(j >= n)tmp[k--] = data[j--];
	while(++k <= end)data[k] = tmp[k];
}
void InversePairs(int* data,int start,int end,int* tmp,int& count)
{
	if(start < end)
	{
		int mid = start + ((end - start)>>1);
		InversePairs(data,start,mid,tmp,count);
		InversePairs(data,mid+1,end,tmp,count);
		merge(data,start,mid,end,tmp,count);
	}
}
int InversePairs(int* data,int length)
{
	int* tmp = new int[length];
	int count = 0;
	InversePairs(data,0,length-1,tmp,count);
	delete[] tmp;
	return count;
}


归并排序的应用