首页 > 代码库 > (转)数据结构之图(存储结构、遍历)

(转)数据结构之图(存储结构、遍历)

一、图的存储结构

1.1 邻接矩阵

    图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。

    设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:

    

    看一个实例,下图左就是一个无向图。

    

    从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij = aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。

    从这个矩阵中,很容易知道图中的信息。

    (1)要判断任意两顶点是否有边无边就很容易了;

    (2)要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行或(第i列)的元素之和;

    (3)求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点;

    而有向图讲究入度和出度,顶点vi的入度为1,正好是第i列各数之和。顶点vi的出度为2,即第i行的各数之和。

    若图G是网图,有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:

    

    这里的wij表示(vi,vj)上的权值。无穷大表示一个计算机允许的、大于所有边上权值的值,也就是一个不可能的极限值。下面左图就是一个有向网图,右图就是它的邻接矩阵。

    

    那么邻接矩阵是如何实现图的创建的呢?代码如下。

 

  1 #include <stdio.h>  2 #include <stdlib.h>  3 #include <curses.h>  4    5 typedef char VertexType;                //顶点类型应由用户定义  6 typedef int EdgeType;                   //边上的权值类型应由用户定义  7    8 #define MAXVEX  100             //最大顶点数,应由用户定义  9 #define INFINITY    65535               //用65535来代表无穷大 10 #define DEBUG 11   12 typedef struct 13 { 14     VertexType vexs[MAXVEX];            //顶点表 15     EdgeType   arc[MAXVEX][MAXVEX];         //邻接矩阵,可看作边 16     int numVertexes, numEdges;      //图中当前的顶点数和边数 17 }Graph; 18   19 //定位 20 int locates(Graph *g, char ch) 21 { 22     int i = 0; 23     for(i = 0; i < g->numVertexes; i++) 24     { 25         if(g->vexs[i] == ch) 26         { 27             break; 28         } 29     } 30     if(i >= g->numVertexes) 31     { 32         return -1; 33     } 34       35     return i; 36 } 37   38 //建立一个无向网图的邻接矩阵表示 39 void CreateGraph(Graph *g) 40 { 41     int i, j, k, w; 42     printf("输入顶点数和边数:\n"); 43     scanf("%d,%d", &(g->numVertexes), &(g->numEdges)); 44       45     #ifdef DEBUG 46     printf("%d %d\n", g->numVertexes, g->numEdges); 47     #endif 48   49     for(i = 0; i < g->numVertexes; i++) 50     { 51         g->vexs[i] = getchar(); 52         while(g->vexs[i] == \n) 53         { 54             g->vexs[i] = getchar(); 55         } 56     } 57       58     #ifdef DEBUG 59     for(i = 0; i < g->numVertexes; i++) 60     { 61         printf("%c ", g->vexs[i]); 62     } 63     printf("\n"); 64     #endif 65   66   67     for(i = 0; i < g->numEdges; i++) 68     { 69         for(j = 0; j < g->numEdges; j++) 70         { 71             g->arc[i][j] = INFINITY; //邻接矩阵初始化 72         } 73     } 74     for(k = 0; k < g->numEdges; k++) 75     { 76         char p, q; 77         printf("输入边(vi,vj)上的下标i,下标j和权值:\n"); 78           79         p = getchar(); 80         while(p == \n) 81         { 82             p = getchar(); 83         } 84         q = getchar(); 85         while(q == \n) 86         { 87             q = getchar(); 88         } 89         scanf("%d", &w);    90           91         int m = -1; 92         int n = -1; 93         m = locates(g, p); 94         n = locates(g, q); 95         if(n == -1 || m == -1) 96         { 97             fprintf(stderr, "there is no this vertex.\n"); 98             return; 99         }100         //getchar();101         g->arc[m][n] = w;102         g->arc[n][m] = g->arc[m][n];  //因为是无向图,矩阵对称103     }104 }105  106 //打印图107 void printGraph(Graph g)108 {109     int i, j;110     for(i = 0; i < g.numVertexes; i++)111     {112         for(j = 0; j < g.numVertexes; j++)113         {114             printf("%d  ", g.arc[i][j]);115         }116         printf("\n");117     }118 }119  120 int main(int argc, char **argv)121 {122     Graph g;123      124     //邻接矩阵创建图125     CreateGraph(&g);126     printGraph(g);127     return 0;128 }

 

 从代码中可以得到,n个顶点和e条边的无向网图的创建,时间复杂度为O(n + n2 + e),其中对邻接矩阵Grc的初始化耗费了O(n2)的时间。

 

1.2 邻接表

    邻接矩阵是不错的一种图存储结构,但是,对于边数相对顶点较少的图,这种结构存在对存储空间的极大浪费。因此,找到一种数组与链表相结合的存储方法称为邻接表。

    邻接表的处理方法是这样的:

    (1)图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过,数组可以较容易的读取顶点的信息,更加方便。

    (2)图中每个顶点vi的所有邻接点构成一个线性表,由于邻接点的个数不定,所以,用单链表存储,无向图称为顶点vi的边表,有向图则称为顶点vi作为弧尾的出边表。

    例如,下图就是一个无向图的邻接表的结构。

    

    从图中可以看出,顶点表的各个结点由data和firstedge两个域表示,data是数据域,存储顶点的信息,firstedge是指针域,指向边表的第一个结点,即此顶点的第一个邻接点。边表结点由adjvex和next两个域组成。adjvex是邻接点域,存储某顶点的邻接点在顶点表中的下标,next则存储指向边表中下一个结点的指针。

    对于带权值的网图,可以在边表结点定义中再增加一个weight的数据域,存储权值信息即可。如下图所示。

    

    对于邻接表结构,图的建立代码如下。

/* 邻接表表示的图结构 */#include <stdio.h>#include<stdlib.h> #define DEBUG#define MAXVEX 1000         //最大顶点数typedef char VertexType;        //顶点类型应由用户定义typedef int EdgeType;           //边上的权值类型应由用户定义 typedef struct EdgeNode         //边表结点{    int adjvex;         //邻接点域,存储该顶点对应的下标    EdgeType weigth;        //用于存储权值,对于非网图可以不需要    struct EdgeNode *next;      //链域,指向下一个邻接点}EdgeNode; typedef struct VertexNode       //顶点表结构{    VertexType data;        //顶点域,存储顶点信息    EdgeNode *firstedge;        //边表头指针}VertexNode, AdjList[MAXVEX]; typedef struct{    AdjList adjList;    int numVertexes, numEdges;  //图中当前顶点数和边数}GraphList; int Locate(GraphList *g, char ch){    int i;    for(i = 0; i < MAXVEX; i++)    {        if(ch == g->adjList[i].data)        {            break;        }    }    if(i >= MAXVEX)    {        fprintf(stderr,"there is no vertex.\n");        return -1;    }    return i;} //建立图的邻接表结构void CreateGraph(GraphList *g){    int i, j, k;    EdgeNode *e;    EdgeNode *f;    printf("输入顶点数和边数:\n");    scanf("%d,%d", &g->numVertexes, &g->numEdges);         #ifdef DEBUG    printf("%d,%d\n", g->numVertexes, g->numEdges);    #endif         for(i = 0; i < g->numVertexes; i++)    {        printf("请输入顶点%d:\n", i);        g->adjList[i].data = http://www.mamicode.com/getchar();          //输入顶点信息        g->adjList[i].firstedge = NULL;          //将边表置为空表        while(g->adjList[i].data =http://www.mamicode.com/= \n)        {            g->adjList[i].data =http://www.mamicode.com/ getchar();        }    }    //建立边表    for(k = 0; k < g->numEdges; k++)    {        printf("输入边(vi,vj)上的顶点序号:\n");        char p, q;        p = getchar();        while(p == \n)        {            p = getchar();        }        q = getchar();        while(q == \n)        {            q = getchar();        }        int m, n;        m = Locate(g, p);        n = Locate(g, q);        if(m == -1 || n == -1)        {            return;        }        #ifdef DEBUG        printf("p = %c\n", p);        printf("q = %c\n", q);        printf("m = %d\n", m);        printf("n = %d\n", n);        #endif             //向内存申请空间,生成边表结点        e = (EdgeNode *)malloc(sizeof(EdgeNode));        if(e == NULL)        {            fprintf(stderr, "malloc() error.\n");            return;        }        //邻接序号为j        e->adjvex = n;        //将e指针指向当前顶点指向的结构        e->next = g->adjList[m].firstedge;        //将当前顶点的指针指向e        g->adjList[m].firstedge = e;                 f = (EdgeNode *)malloc(sizeof(EdgeNode));        if(f == NULL)        {            fprintf(stderr, "malloc() error.\n");            return;        }        f->adjvex = m;        f->next = g->adjList[n].firstedge;        g->adjList[n].firstedge = f;    }}  void printGraph(GraphList *g){    int i = 0;    #ifdef DEBUG    printf("printGraph() start.\n");    #endif         while(g->adjList[i].firstedge != NULL && i < MAXVEX)    {        printf("顶点:%c  ", g->adjList[i].data);        EdgeNode *e = NULL;        e = g->adjList[i].firstedge;        while(e != NULL)        {            printf("%d  ", e->adjvex);            e = e->next;        }        i++;        printf("\n");    }} int main(int argc, char **argv){    GraphList g;    CreateGraph(&g);    printGraph(&g);    return 0;}

对于无向图,一条边对应都是两个顶点,所以,在循环中,一次就针对i和j分布进行插入。

 

    本算法的时间复杂度,对于n个顶点e条边来说,很容易得出是O(n+e)。

1.3 十字链表

    对于有向图来说,邻接表是有缺陷的。关心了出度问题,想了解入度就必须要遍历整个图才知道,反之,逆邻接表解决了入度却不了解出度情况。下面介绍的这种有向图的存储方法:十字链表,就是把邻接表和逆邻接表结合起来的。

    重新定义顶点表结点结构,如下所示。

    

    其中firstin表示入边表头指针,指向该顶点的入边表中第一个结点,firstout表示出边表头指针,指向该顶点的出边表中的第一个结点。

    重新定义边表结构,如下所示。

    

    其中,tailvex是指弧起点在顶点表的下表,headvex是指弧终点在顶点表的下标,headlink是指入边表指针域,指向终点相同的下一条边,taillink是指边表指针域,指向起点相同的下一条边。如果是网,还可以增加一个weight域来存储权值。

    比如下图,顶点依然是存入一个一维数组,实线箭头指针的图示完全与邻接表相同。就以顶点v0来说,firstout指向的是出边表中的第一个结点v3。所以,v0边表结点hearvex = 3,而tailvex其实就是当前顶点v0的下标0,由于v0只有一个出边顶点,所有headlink和taillink都是空的。

    

    重点需要解释虚线箭头的含义。它其实就是此图的逆邻接表的表示。对于v0来说,它有两个顶点v1和v2的入边。因此的firstin指向顶点v1的边表结点中headvex为0的结点,如上图圆圈1。接着由入边结点的headlink指向下一个入边顶点v2,如上图圆圈2。对于顶点v1,它有一个入边顶点v2,所以它的firstin指向顶点v2的边表结点中headvex为1的结点,如上图圆圈3。

    十字链表的好处就是因为把邻接表和逆邻接表整合在一起,这样既容易找到以v为尾的弧,也容易找到以v为头的弧,因而比较容易求得顶点的出度和入度。

    而且除了结构复杂一点外,其实创建图算法的时间复杂度是和邻接表相同的,因此,在有向图应用中,十字链表是非常好的数据结构模型。

    这里就介绍以上三种存储结构,除了第三种存储结构外,其他的两种存储结构比较简单。

 

二、图的遍历

    图的遍历和树的遍历类似,希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫图的遍历。

    对于图的遍历来说,如何避免因回路陷入死循环,就需要科学地设计遍历方案,通过有两种遍历次序方案:深度优先遍历和广度优先遍历。

2.1 深度优先遍历

    深度优先遍历,也有称为深度优先搜索,简称DFS。其实,就像是一棵树的前序遍历。

    它从图中某个结点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。若图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中的所有顶点都被访问到为止。

    我们用邻接矩阵的方式,则代码如下所示。

 1 #define MAXVEX  100     //最大顶点数 2 typedef int Boolean;            //Boolean 是布尔类型,其值是TRUE 或FALSE 3 Boolean visited[MAXVEX];        //访问标志数组 4 #define TRUE 1 5 #define FALSE 0 6   7 //邻接矩阵的深度优先递归算法 8 void DFS(Graph g, int i) 9 {10     int j;11     visited[i] = TRUE;12     printf("%c ", g.vexs[i]);                           //打印顶点,也可以其他操作13     for(j = 0; j < g.numVertexes; j++)14     {15         if(g.arc[i][j] == 1 && !visited[j])16         {17             DFS(g, j);                  //对为访问的邻接顶点递归调用18         }19     }20 }21  22 //邻接矩阵的深度遍历操作23 void DFSTraverse(Graph g)24 {25     int i;26     for(i = 0; i < g.numVertexes; i++)27     {28         visited[i] = FALSE;         //初始化所有顶点状态都是未访问过状态29     }30     for(i = 0; i < g.numVertexes; i++)31     {32         if(!visited[i])             //对未访问的顶点调用DFS,若是连通图,只会执行一次33         {34             DFS(g,i);35         }36     }37 }

 如果使用的是邻接表存储结构,其DFSTraverse函数的代码几乎是相同的,只是在递归函数中因为将数组换成了链表而有不同,代码如下。

 1 //邻接表的深度递归算法 2 void DFS(GraphList g, int i) 3 { 4     EdgeNode *p; 5     visited[i] = TRUE; 6     printf("%c ", g->adjList[i].data);   //打印顶点,也可以其他操作 7     p = g->adjList[i].firstedge; 8     while(p) 9     {10         if(!visited[p->adjvex])11         {12             DFS(g, p->adjvex);           //对访问的邻接顶点递归调用13         }14         p = p->next;15     }16 }17  18 //邻接表的深度遍历操作19 void DFSTraverse(GraphList g)20 {21     int i;22     for(i = 0; i < g.numVertexes; i++)23     {24         visited[i] = FALSE;25     }26     for(i = 0; i < g.numVertexes; i++)27     {28         if(!visited[i])29         {30             DFS(g, i);31         }32     }33 }

   对比两个不同的存储结构的深度优先遍历算法,对于n个顶点e条边的图来说,邻接矩阵由于是二维数组,要查找某个顶点的邻接点需要访问矩阵中的所有元素,因为需要O(n2)的时间。而邻接表做存储结构时,找邻接点所需的时间取决于顶点和边的数量,所以是O(n+e)。显然对于点多边少的稀疏图来说,邻接表结构使得算法在时间效率上大大提高。

 

2.2 广度优先遍历

    广度优先遍历,又称为广度优先搜索,简称BFS。图的广度优先遍历就类似于树的层序遍历了。

    邻接矩阵做存储结构时,广度优先搜索的代码如下。

 1 //邻接矩阵的广度遍历算法 2 void BFSTraverse(Graph g) 3 { 4     int i, j; 5     Queue q; 6     for(i = 0; i < g.numVertexes; i++) 7     { 8         visited[i] = FALSE; 9     }10     InitQueue(&q);11     for(i = 0; i < g.numVertexes; i++)//对每个顶点做循环12     {13         if(!visited[i])               //若是未访问过14         {15             visited[i] = TRUE;16             printf("%c ", g.vexs[i]); //打印结点,也可以其他操作17             EnQueue(&q, i);           //将此结点入队列18             while(!QueueEmpty(q))     //将队中元素出队列,赋值给19             {20                 int m;21                 DeQueue(&q, &m);        22                 for(j = 0; j < g.numVertexes; j++)23                 {24                     //判断其他顶点若与当前顶点存在边且未访问过25                     if(g.arc[m][j] == 1 && !visited[j])26                     {27                         visited[j] = TRUE;28                         printf("%c ", g.vexs[j]);29                         EnQueue(&q, j);30                     }31                 }32             }33         }34     }35 } 

 

对于邻接表的广度优先遍历,代码与邻接矩阵差异不大, 代码如下。

 1 //邻接表的广度遍历算法 2 void BFSTraverse(GraphList g) 3 { 4     int i; 5     EdgeNode *p; 6     Queue q; 7     for(i = 0; i < g.numVertexes; i++) 8     { 9         visited[i] = FALSE;10     }11     InitQueue(&q);12     for(i = 0; i < g.numVertexes; i++)13     {14         if(!visited[i])15         {16             visited[i] = TRUE;17             printf("%c ", g.adjList[i].data);   //打印顶点,也可以其他操作18             EnQueue(&q, i);19             while(!QueueEmpty(q))20             {21                 int m;22                 DeQueue(&q, &m);23                 p = g.adjList[m].firstedge;     找到当前顶点边表链表头指针24                 while(p)25                 {26                     if(!visited[p->adjvex])27                     {28                         visited[p->adjvex] = TRUE;29                         printf("%c ", g.adjList[p->adjvex].data);30                         EnQueue(&q, p->adjvex);31                     }32                     p = p->next;33                 }34             }35         }36     }37 }

 

  对比图的深度优先遍历与广度优先遍历算法,会发现,它们在时间复杂度上是一样的,不同之处仅仅在于对顶点的访问顺序不同。可见两者在全图遍历上是没有优劣之分的,只是不同的情况选择不同的算法。

(转)数据结构之图(存储结构、遍历)