首页 > 代码库 > hdu 4267 A Simple Problem with Integers(树形结构-线段树)
hdu 4267 A Simple Problem with Integers(树形结构-线段树)
A Simple Problem with Integers
Time Limit: 5000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3708 Accepted Submission(s): 1139
Problem Description
Let A1, A2, ... , AN be N elements. You need to deal with two kinds of operations. One type of operation is to add a given number to a few numbers in a given interval. The other is to query the value of some element.
Input
There are a lot of test cases.
The first line contains an integer N. (1 <= N <= 50000)
The second line contains N numbers which are the initial values of A1, A2, ... , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000)
The third line contains an integer Q. (1 <= Q <= 50000)
Each of the following Q lines represents an operation.
"1 a b k c" means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000)
"2 a" means querying the value of Aa. (1 <= a <= N)
The first line contains an integer N. (1 <= N <= 50000)
The second line contains N numbers which are the initial values of A1, A2, ... , AN. (-10,000,000 <= the initial value of Ai <= 10,000,000)
The third line contains an integer Q. (1 <= Q <= 50000)
Each of the following Q lines represents an operation.
"1 a b k c" means adding c to each of Ai which satisfies a <= i <= b and (i - a) % k == 0. (1 <= a <= b <= N, 1 <= k <= 10, -1,000 <= c <= 1,000)
"2 a" means querying the value of Aa. (1 <= a <= N)
Output
For each test case, output several lines to answer all query operations.
Sample Input
4 1 1 1 1 14 2 1 2 2 2 3 2 4 1 2 3 1 2 2 1 2 2 2 3 2 4 1 1 4 2 1 2 1 2 2 2 3 2 4
Sample Output
1 1 1 1 1 3 3 1 2 3 4 1
首先,我们来设计一下顶层模型。看下图:
假设我们先插入了3段:
L1 R1 k1 c1
L2 R2 k2 c2
L3 R3 k3 c3
然后查询图中的i点,那么,我只要遍历所有插入的线段里包含i点的线段,然后判断(i-L)%k是否==0,若等于0,就将i点的初始值加上c。
实现:暴力实现肯定会超时,超时就在于找包含i点的线段上。我们可以用线段树来解决寻找包含i点的线段的问题。见下图:
像图中找点2时,其实线段树查询到2走过的每个线段都包含了2这个点。
那么,现在问题就转换为:只要在当前这个线段判断(i-l)%k==0,然后再+c就行了。又因为1<=k<=10,范围很小,所以每个线段都有一个数组sum[11]来记录插入该段的信息,比如当前这个线段内某点i满足(i-l)%k==0,就可以+c,那么sum[k] = c。
例如,我们插入:
a b k c
1 2 2 1
那么,[1,2]线段里的sum[2] = 1,假设我们现在查询1这个点,走到[1,2]这段时,因为(1-1)%2==0,所以最终答案就是初始值+1.
上面的例子是插入的线段往左儿子方向的情况,但是当要往右儿子方向的情况的时候会有一个问题,看下面的例子。
假设我们插入:
a b k c
2 4 2 1
我们发现一个问题,就是当[2,4]往右子树走时,区间变成了[3,4],但是[3,4]这个区间的左边界L=3,(L-a)%k = (3-2)%2 != 0,这样一来,我们查询点3的时候就会错,因为查询点3时,经过[3,4],(3-3)%2 == 0那么答案会+1,但是(3-2)%2 !=0。因此,我们插入的时候必须保证左端点(L-a)%k 一定等于0。所以,当往右边走的时候,要对区间稍作处理,一般我们会这样写:
update(mid+1 , r , 2*k+1);
现在是:
int tl = mid+1+(k-(mid+1)%k)%k;
update(tl , r , 2*k+1);
当然tl<=r,否则就不必往下插入了。
#include <iostream> #include <cstdio> using namespace std; const int maxn = 50010; struct tree{ int l , r, k[12]; }a[4*maxn]; int num[maxn] , N , Q; void build(int l , int r , int k){ a[k].l = l; a[k].r = r; for(int i = 0; i < 12; i++) a[k].k[i] = 0; if(l != r){ int mid = (l+r)/2; build(l , mid , 2*k); build(mid+1 , r , 2*k+1); } } void update(int l , int r , int k , int lk , int lc){ if(l <= a[k].l && a[k].r <= r) a[k].k[lk] += lc; else{ int mid = (a[k].l+a[k].r)/2; if(mid >= r) update(l , r, 2*k , lk , lc); else if(mid < l) update(l , r , 2*k+1 , lk , lc); else{ update(l , mid , 2*k , lk , lc); int tl = mid+1+(lk-(mid+1-l)%lk)%lk; if(tl <= r) update(tl , r , 2*k+1 , lk , lc); } } } int getAns(int k , int i){ int ans = 0; for(int j = 1; j <= 10; j++){ if((i-a[k].l)%j == 0) ans += a[k].k[j]; } return ans; } int query(int l , int r , int k){ if(l <= a[k].l && a[k].r <= r) return getAns(k , l); else{ int mid = (a[k].l+a[k].r)/2; int ans = getAns(k , l); if(mid >= r) return ans+query(l , r , 2*k); else return ans+query(l , r , 2*k+1); } } void computing(){ for(int i = 1; i <= N; i++) scanf("%d" , &num[i]); build(1 , N , 1); scanf("%d" , &Q); int op , la, lb , lk , lc; while(Q--){ scanf("%d" , &op); if(op == 1){ scanf("%d%d%d%d" , &la , &lb , &lk , &lc); update(la , lb , 1 , lk , lc); }else{ scanf("%d" , &la); printf("%d\n" , num[la]+query(la , la , 1)); } } } int main(){ while(~scanf("%d" , &N)){ computing(); } return 0; }
hdu 4267 A Simple Problem with Integers(树形结构-线段树)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。