首页 > 代码库 > 30. Distinct Subsequences

30. Distinct Subsequences

Distinct Subsequences

OJ: https://oj.leetcode.com/problems/distinct-subsequences/

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example: S = "rabbbit", T = "rabbit"

Return 3.

思想:动态规划。 D[i][j] = D[i][j-1] + (T[i-1] == S[j-1] ? D[i-1][j-1] : 0);

// DP: D[i][j] = D[i][j-1] + (T[i-1] == S[j-1] ? D[i-1][j-1] : 0);class Solution {public:    int numDistinct(string S, string T) {        int m = T.length();        int n = S.length();        if(!m) return 1;        if(m > n) return 0;        vector<vector<int> > D(m+1, vector<int>(n+1));        for(int i = 1; i <= m; ++i) D[i][0] = 0;        for(int i = 0; i <= n; ++i) D[0][i] = 1;        for(int i = 0; i < m; ++i)            for(int j = 0; j < n; ++j)                D[i+1][j+1] = D[i+1][j] + (T[i] == S[j] ? D[i][j] : 0);        return D[m][n];    }};

改进后:空间复杂度 O(T.size()).

class Solution {public:    int numDistinct(string S, string T) {        int m = T.length();        vector<int> num(m+1, 0); // num[i] is distinct numbers of T[1,...,i] in string S        num[0] = 1;        for(int i = 1; i <= S.length(); ++i)             for(int j = min(i, m); j >= 1; --j) // key to notice.                if(T[j-1] == S[i-1]) num[j] += num[j-1]; // num[j-1] 为上次字符串时,T[1,...,j-1] 的 distinct numbers。        return num[m];    }};

 

30. Distinct Subsequences