首页 > 代码库 > convert_mnist_data.cpp

convert_mnist_data.cpp

// This script converts the MNIST dataset to a lmdb (default) or// leveldb (--backend=leveldb) format used by caffe to load data.// Usage://    convert_mnist_data [FLAGS] input_image_file input_label_file//                        output_db_file// The MNIST dataset could be downloaded at//    http://yann.lecun.com/exdb/mnist/#include <gflags/gflags.h>#include <glog/logging.h>#include <google/protobuf/text_format.h>#if defined(USE_LEVELDB) && defined(USE_LMDB)#include <leveldb/db.h>#include <leveldb/write_batch.h>#include <lmdb.h>#endif#include <stdint.h>#include <sys/stat.h>#include <fstream>  // NOLINT(readability/streams)#include <string>#include "boost/scoped_ptr.hpp"#include "caffe/proto/caffe.pb.h"#include "caffe/util/db.hpp"#include "caffe/util/format.hpp"#if defined(USE_LEVELDB) && defined(USE_LMDB)using namespace caffe;  // NOLINT(build/namespaces)using boost::scoped_ptr;using std::string;DEFINE_string(backend, "lmdb", "The backend for storing the result");uint32_t swap_endian(uint32_t val) {    val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF);    return (val << 16) | (val >> 16);}void convert_dataset(const char* image_filename, const char* label_filename,        const char* db_path, const string& db_backend) {  // Open files  std::ifstream image_file(image_filename, std::ios::in | std::ios::binary);  std::ifstream label_file(label_filename, std::ios::in | std::ios::binary);  CHECK(image_file) << "Unable to open file " << image_filename;  CHECK(label_file) << "Unable to open file " << label_filename;  // Read the magic and the meta data  uint32_t magic;  uint32_t num_items;  uint32_t num_labels;  uint32_t rows;  uint32_t cols;  image_file.read(reinterpret_cast<char*>(&magic), 4);  magic = swap_endian(magic);  CHECK_EQ(magic, 2051) << "Incorrect image file magic.";  label_file.read(reinterpret_cast<char*>(&magic), 4);  magic = swap_endian(magic);  CHECK_EQ(magic, 2049) << "Incorrect label file magic.";  image_file.read(reinterpret_cast<char*>(&num_items), 4);  num_items = swap_endian(num_items);  label_file.read(reinterpret_cast<char*>(&num_labels), 4);  num_labels = swap_endian(num_labels);  CHECK_EQ(num_items, num_labels);  image_file.read(reinterpret_cast<char*>(&rows), 4);  rows = swap_endian(rows);  image_file.read(reinterpret_cast<char*>(&cols), 4);  cols = swap_endian(cols);  scoped_ptr<db::DB> db(db::GetDB(db_backend));  db->Open(db_path, db::NEW);  scoped_ptr<db::Transaction> txn(db->NewTransaction());  // Storing to db  char label;  char* pixels = new char[rows * cols];  int count = 0;  string value;  Datum datum;  datum.set_channels(1);  datum.set_height(rows);  datum.set_width(cols);  LOG(INFO) << "A total of " << num_items << " items.";  LOG(INFO) << "Rows: " << rows << " Cols: " << cols;  for (int item_id = 0; item_id < num_items; ++item_id) {    image_file.read(pixels, rows * cols);    label_file.read(&label, 1);    datum.set_data(pixels, rows*cols);    datum.set_label(label);    string key_str = caffe::format_int(item_id, 8);    datum.SerializeToString(&value);    txn->Put(key_str, value);    if (++count % 1000 == 0) {      txn->Commit();    }  }  // write the last batch  if (count % 1000 != 0) {      txn->Commit();  }  LOG(INFO) << "Processed " << count << " files.";  delete[] pixels;  db->Close();}int main(int argc, char** argv) {#ifndef GFLAGS_GFLAGS_H_  namespace gflags = google;#endif  FLAGS_alsologtostderr = 1;  gflags::SetUsageMessage("This script converts the MNIST dataset to\n"        "the lmdb/leveldb format used by Caffe to load data.\n"        "Usage:\n"        "    convert_mnist_data [FLAGS] input_image_file input_label_file "        "output_db_file\n"        "The MNIST dataset could be downloaded at\n"        "    http://yann.lecun.com/exdb/mnist/\n"        "You should gunzip them after downloading,"        "or directly use data/mnist/get_mnist.sh\n");  gflags::ParseCommandLineFlags(&argc, &argv, true);  const string& db_backend = FLAGS_backend;  if (argc != 4) {    gflags::ShowUsageWithFlagsRestrict(argv[0],        "examples/mnist/convert_mnist_data");  } else {      google::InitGoogleLogging(argv[0]);    convert_dataset(argv[1], argv[2], argv[3], db_backend);  }  return 0;}#elseint main(int argc, char** argv) {  LOG(FATAL) << "This example requires LevelDB and LMDB; " <<  "compile with USE_LEVELDB and USE_LMDB.";}#endif  // USE_LEVELDB and USE_LMDB

  代码中DEFINE_string(backend,"lmdb","the backend for storing the result") 这句采用的gflags工具,为google开源工具,说白了作用就是将backend 这个string类型的变量的默认值为“lamdb”, 在执行没有这个参数的前提下,就使用这个默认值。也可以使用其他比如DEFINE_int64,DEFINE_uint64,DEFINE_bool,DEFINE_double,DEFINE_string等等。

  代码中  std::ifstream image_file(image_filename, std::ios::in | std::ios::binary);ifstream表示输入类,image_file为这种对象,std::ios::binary|std::ios::in表示二进制和输入,类似于C中的“rb"

  

convert_mnist_data.cpp