首页 > 代码库 > 基于tensorflow的MNIST手写识别
基于tensorflow的MNIST手写识别
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环。我也是!
这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟。在TensorFlow的中文介绍文档中的内容,有些可能与你使用的tensorflow的版本不一致了,我这里用到的tensorflow的版本就有这个问题。 另外,还给大家说下,例子中的MNIST所用到的资源图片,在原始的官网上,估计很多人都下载不到了。我也提供一下下载地址。
我的tensorflow的版本信息:
>>> import tensorflow as tf >>> print tf.VERSION 1.0.1 >>> print tf.GIT_VERSION v1.0.0-65-g4763edf-dirty >>> print tf.COMPILER_VERSION 4.8.4
下面,就看看,我参考的中文tensorflow网站的代码,在自己的环境里,运行的结果。
1 [root@bogon tensorflow]# python 2 Python 2.7.5 (default, Nov 6 2016, 00:28:07) 3 [GCC 4.8.5 20150623 (Red Hat 4.8.5-11)] on linux2 4 Type "help", "copyright", "credits" or "license" for more information. 5 >>> import tensorflow.examples.tutorials.mnist.input_data as input_data 6 >>> mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 7 Traceback (most recent call last): 8 File "<stdin>", line 1, in <module> 9 File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py", line 211, in read_data_sets 10 SOURCE_URL + TRAIN_IMAGES) 11 File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/base.py", line 208, in maybe_download 12 temp_file_name, _ = urlretrieve_with_retry(source_url) 13 File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/base.py", line 165, in wrapped_fn 14 return fn(*args, **kwargs) 15 File "/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/base.py", line 190, in urlretrieve_with_retry 16 return urllib.request.urlretrieve(url, filename) 17 File "/usr/lib64/python2.7/urllib.py", line 94, in urlretrieve 18 return _urlopener.retrieve(url, filename, reporthook, data) 19 File "/usr/lib64/python2.7/urllib.py", line 240, in retrieve 20 fp = self.open(url, data) 21 File "/usr/lib64/python2.7/urllib.py", line 203, in open 22 return self.open_unknown_proxy(proxy, fullurl, data) 23 File "/usr/lib64/python2.7/urllib.py", line 222, in open_unknown_proxy 24 raise IOError, (‘url error‘, ‘invalid proxy for %s‘ % type, proxy) 25 IOError: [Errno url error] invalid proxy for http: ‘10.90.1.101:8080‘ 26 >>> 27 >>> mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 28 Extracting MNIST_data/train-images-idx3-ubyte.gz 29 Extracting MNIST_data/train-labels-idx1-ubyte.gz 30 Extracting MNIST_data/t10k-images-idx3-ubyte.gz 31 Extracting MNIST_data/t10k-labels-idx1-ubyte.gz 32 >>> import tensorflow as tf 33 >>> x = tf.placeholder(tf.float32, [None, 784]) 34 >>> W = tf.Variable(tf.zeros([784,10])) 35 >>> b = tf.Variable(tf.zeros([10])) 36 >>> y = tf.nn.softmax(tf.matmul(x,W) + b) 37 >>> y_ = tf.placeholder("float", [None,10]) 38 >>> cross_entropy = -tf.reduce_sum(y_*tf.log(y)) 39 >>> train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) 40 >>> init = tf.initialize_all_variables() 41 WARNING:tensorflow:From <stdin>:1: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. 42 Instructions for updating: 43 Use `tf.global_variables_initializer` instead. 44 >>> init = tf.global_variables_initializer() 45 >>> sess = tf.Session() 46 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations. 47 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 48 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 49 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 50 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 51 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. 52 >>> sess.run(init) 53 >>> for i in range(1000): 54 ... batch_xs, batch_ys = mnist.train.next_batch(100) 55 ... sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) 56 ... 57 >>> correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) 58 >>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 59 >>> print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}) 60 0.9088 61 >>>
上述日志,是我的测试全过程记录,上面反映的信息有如下几点:
1. 红色部分的错误,因为我本地机器是通过代理上网的,这个过程中,tensorflow会用urllib进行MNIST的图片资源的下载,由于网络问题,资源文件下载失败。
2. 都有哪些资源文件要下载呢?追踪日志中的文件/usr/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py第211行前后:
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True, validation_size=5000): if fake_data: def fake(): return DataSet([], [], fake_data=http://www.mamicode.com/True, one_hot=one_hot, dtype=dtype) train = fake() validation = fake() test = fake() return base.Datasets(train=train, validation=validation, test=test) TRAIN_IMAGES = ‘train-images-idx3-ubyte.gz‘ TRAIN_LABELS = ‘train-labels-idx1-ubyte.gz‘ TEST_IMAGES = ‘t10k-images-idx3-ubyte.gz‘ TEST_LABELS = ‘t10k-labels-idx1-ubyte.gz‘ local_file = base.maybe_download(TRAIN_IMAGES, train_dir, SOURCE_URL + TRAIN_IMAGES) with open(local_file, ‘rb‘) as f: train_images = extract_images(f) local_file = base.maybe_download(TRAIN_LABELS, train_dir, SOURCE_URL + TRAIN_LABELS) with open(local_file, ‘rb‘) as f: train_labels = extract_labels(f, one_hot=one_hot) local_file = base.maybe_download(TEST_IMAGES, train_dir, SOURCE_URL + TEST_IMAGES) with open(local_file, ‘rb‘) as f: test_images = extract_images(f) local_file = base.maybe_download(TEST_LABELS, train_dir, SOURCE_URL + TEST_LABELS) with open(local_file, ‘rb‘) as f: test_labels = extract_labels(f, one_hot=one_hot) if not 0 <= validation_size <= len(train_images): raise ValueError( ‘Validation size should be between 0 and {}. Received: {}.‘ .format(len(train_images), validation_size)) validation_images = train_images[:validation_size] validation_labels = train_labels[:validation_size] train_images = train_images[validation_size:] train_labels = train_labels[validation_size:] train = DataSet(train_images, train_labels, dtype=dtype, reshape=reshape) validation = DataSet(validation_images, validation_labels, dtype=dtype, reshape=reshape) test = DataSet(test_images, test_labels, dtype=dtype, reshape=reshape) return base.Datasets(train=train, validation=validation, test=test)
看到上面红色的部分,就是这里需要下载的图片资源文件。这个,我的网络环境是下载不了的。我通过其他途径下载到了这里需要的资源。我将下载的图片资源,放在了我进入python时所在的路径下。虽然直接下载没有成功,但是在当前路径下还是创建了MNIST_data的目录的。如下图,红色圈目录就是程序创建的目录。我将下载的train-images-idx3-ubyte.gz,train-labels-idx1-ubyte.gz,t10k-images-idx3-ubyte.gz,t10k-labels-idx1-ubyte.gz放在MNIST_data目录了。
然后,再次执行mnist = input_data.read_data_sets("MNIST_data/", one_hot=True),就ok了,不会报错。得到28-31行的输出信息。
3. 执行到第40行的代码时,爆出WARNING,提示用新的函数,按照提示信息,执行了第41行的代码,OK。说明版本兼容性,在tensorflow中需要注意。
4. 执行后,得到结果,如60行显示,识别率为0.9088。
关于MNIST的这个例子的手写识别性能的理论,不是本博文的重点,读者可以参照MNIST相关的文章自行学习。
最后,附上MNIST这个例子中,用到的资源图片下载地址,点击进行下载。(说明:需要积分才能下载的,谅解)
基于tensorflow的MNIST手写识别