首页 > 代码库 > 基于kNN的手写字体识别——《机器学习实战》笔记

基于kNN的手写字体识别——《机器学习实战》笔记

看完一节《机器学习实战》,算是踏入ML的大门了吧!这里就详细讲一下一个demo:使用kNN算法实现手写字体的简单识别

kNN

 先简单介绍一下kNN,就是所谓的K-近邻算法:

  【作用原理】:存在一个样本数据集合、每个样本数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集数据的对应特征进行比较,然后算法提取样本集中最相似的分类标签。一般说来,我们只选择样本数据集中前k个最相似的数据,最后,选择这k个相似数据中出现次数最多的分类,作为新数据的分类。

  通俗的说,举例说明:有一群明确国籍的人(样本集合,比如1000个):中国人、韩国人、日本人、美国人、埃及人,现在有一个不知国籍的人,想要通过比较特征来猜测他的国籍(当然,特征具有可比较性和有效性),通过比较特征,得出特征与该人最相近的样本集中的9个人(k),其中,1个是韩国人、2个是日本人,6个是中国人,那么这个人是中国人的可能性就很大。

  这就是kNN的基本思想。

手写体识别数据准备

  kNN输入需要特征矩阵,一般是固定大小的二值图像,这里我们使用书上提供的数据集:这个数据集使用32X32文本文件存储数值图像。例如下图的‘9‘

技术分享

 

  这里每个文本文件存储一个手写体数据,并且文件名写成"number_num.txt"这样的形式,例如9_1.txt,方便后期提取标签

  我们将样本数据放在trainingDigits文件夹中,测试样例存储在testDigits文件夹中

技术分享

  我们在处理时将每个手写体数据(32x32)转换成1X1024维的向量。

  另外,kNN涉及到相似度计算。这里我们使用的是欧氏距离,由于手写体数据向量是规则的二值数据,因此不需要进行归一化。

手写体识别算法运行流程

  (一)读取手写体txt文件,转化为1X1024向量

    我们创建一个kNN.py,添加模块img2vector

1 #识别手写字体模块-图像转向量32x32 to 1x1024
2 def img2vector(filename):
3     returnVect = zeros((1,1024))
4     fr = open(filename)
5     for i in range(32):
6         lineStr = fr.readline()
7         for j in range(32):
8             returnVect[0,32*i+j] = int(lineStr[j])
9     return returnVect

    我们的样本数据和测试数据都需要用到该函数

  (二)比较测试数据和样本数据集的距离,返回k近邻中最相似的标签

    在kNN.py中添加classify0模块,附上代码注释  

 1 #---------------------------------------------
 2 #分类模块
 3 #@params
 4 #   inX:输入向量、手写体识别的测试向量
 5 #    dataSet:训练集样本、手写体识别的训练集向量
 6 #    labels:训练集对应的标签向量
 7 #    k:最近邻居数目、本实验为3
 8 #---------------------------------------------
 9 def classifiy0(inX, dataSet, labels, k):
10     dataSetSize = dataSet.shape[0]     #手写体样本集容量
11     #(以下三行)距离计算
12     diffMat = tile(inX, (dataSetSize,1)) - dataSet
13     sqDiffMat = diffMat**2    
14     sqDistances = sqDiffMat.sum(axis=1)
15     distances = sqDistances**0.5   #欧氏距离开平方
16     sortedDistIndicies = distances.argsort()  #距离排序的索引排序
17     classCount = {}    
18     #(以下两行)选择距离最小的k个点
19     for i in range(k):
20         voteIlabel = labels[sortedDistIndicies[i]]
21         classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
22     sortedClassCount = sorted(classCount.items(),
23     #排序
24     key = operator.itemgetter(1), reverse = True)
25     return sortedClassCount[0][0]            

    注意,这里使用了numpy的接口,在kNN.py的开头要加上:from numpy import* 

  (三)比较标签与测试结果,计算正确率

    同样,在kNN.py中添加handwritingClassTest模块,综合以上的两个模块,获得识别正确率

 1 #手写识别的测试代码
 2 def handwritingClassTest():
 3     hwLabels = []
 4     trainingFileList = listdir(path=trainingDigits)  #获取目录内容
 5     m = len(trainingFileList)
 6     trainingMat = zeros((m,1024))
 7     for i in range(m):
 8         #一下三行,从文件名解析分类数字
 9         fileNameStr = trainingFileList[i]
10         fileStr = fileNameStr.split(.)[0]
11         classNumStr = int(fileStr.split(_)[0])
12 
13         hwLabels.append(classNumStr)
14         trainingMat[i,:] = img2vector(trainingDigits/%s%fileNameStr)
15     testFileList = listdir(path=testDigits)
16     
17     errorCount = 0.0  #错误个数计数器
18     mTest = len(testFileList)
19 
20     #从测试数据中提取数据
21     for i in range(mTest):
22         fileNameStr = testFileList[i]
23         fileStr = fileNameStr.split(.)[0]
24         
25         classNumStr = int(fileStr.split(_)[0])
26         vectorUnderTest = img2vector(testDigits/%s% fileNameStr)
27         classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
28         
29         print("the classifier came back with:%d,the real answer is:%d"%(classifierResult,classNumStr))
30         if(classifierResult != classNumStr):
31             errorCount += 1.0
32    #输出结果
33     print("\nthe total number of errors is:%d"%errorCount)
34     print("\nthe total error rate is: %f"%(errorCount/float(mTest)))

    注意,这里使用到了os模块listdir,在kNN开头加入:from numpy import listdir

  测试结果如下:

技术分享

  错误率为1.16%,可以看到,识别效果挺不错。

后记

  通过实验我们可以看到,使用kNN要将训练样本一次性加载入内存、如果训练集的规模很大,势必对机器有很大的要求。另外,kNN不需要训练算法、对异常值不敏感、在后期使用的时候要慎重选择吧

 

 

    

 

 

基于kNN的手写字体识别——《机器学习实战》笔记