首页 > 代码库 > poj3685 Matrix 二分 函数单调性

poj3685 Matrix 二分 函数单调性

 

 Memory Limit: 65536K
Total Submissions: 4637 Accepted: 1180

Description

Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.

Input

The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.

Output

For each test case output the answer on a single line.

Sample Input

121 12 12 22 32 43 13 23 83 95 15 255 10

Sample Output

3-99993312100007-199987-99993100019200013-399969400031-99939

思路:
1 可以看出当j确定的时候i是单调递增的,那么就可以二分得到某个值当j确定时有多少i的值大于它,设为big
2 二分答案当big+ind>n*n(也即全部个数)时,这个值就太小了,增加下界,反之减少上界即可
错误原因 1:全部个数忘了n*n,打成n了 2:上下界错误,看成了1e4 3:读取爆longlong
#include <cstdio>using namespace std;long long ind,n;long long equ(long long i,long long j){    return i*i+j*j+i*j+(i-j)*100000;}long long judge(long long mid){    long long big=0;    for(int j=1;j<=n;j++){        int l=0;        int r=n+1;        long long cp;        while(r-l>1){            int m=(r+l)>>1;            cp=equ(m,j);            if(cp==mid){                l=m;                break;            }            else if(cp<mid){                l=m;            }            else{                r=m;            }        } //       printf("binary %I64d col %d %I64d\n",mid,j,l);        big+=n-l;    }    return big;}void printe(){    for(int i=1;i<=n;i++){        for(int j=1;j<=n;j++){            printf("%6I64d ",equ(i,j));        }        puts("");    }}int main(){    int T;   // freopen("C:\\Users\\Administrator\\Desktop\\input.txt","r",stdin);    scanf("%d",&T);    while(T--){        scanf("%I64d%I64d",&n,&ind);        long long l=-(3*n*n+n*300000),r=-l;        //printe();        while(r-l>1){            long long mid=l+r>>1;            long long big=judge(mid);            if(big>n*n-ind){                l=mid;            }            else {                r=mid;            }        }        printf("%I64d\n",r);    }    return  0;}

  

poj3685 Matrix 二分 函数单调性