首页 > 代码库 > 常用的机器学习知识(点)

常用的机器学习知识(点)

常用的机器学习&数据挖掘知识(点)
 声明:想做机器学习&数据挖掘的学弟学妹,可以看看,转载请说明出处...

常用的机器学习知识(点)

Basis(基础)

MSE(Mean Square Error 均方误差)LMS(LeastMean Square 最小均方)LSM(Least Square Methods 最小二乘法)MLE(MaximumLikelihood Estimation最大似然估计)QP(Quadratic Programming 二次规划) CP(Conditional Probability条件概率)JP(Joint Probability 联合概率)MP(Marginal Probability边缘概率)Bayesian Formula(贝叶斯公式)L1 /L2Regularization(L1/L2正则)GD(GradientDescent 梯度下降)SGD(Stochastic Gradient Descent 随机梯度下降)Eigenvalue(特征值)Eigenvector(特征向量)QR-decomposition(QR分解)Quantile (分位数)Covariance(协方差矩阵)

Common Distribution(常见分布)

Discrete Distribution(离散型分布)BernoulliDistribution/Binomial(贝努利分布/二项分布)Negative BinomialDistribution(负二项分布)MultinomialDistribution(多项式分布)Geometric Distribution(几何分布)HypergeometricDistribution(超几何分布)Poisson Distribution (泊松分布)

Continuous Distribution (连续型分布)UniformDistribution(均匀分布)Normal Distribution /Guassian Distribution(正态分布/高斯分布)ExponentialDistribution(指数分布)Lognormal Distribution(对数正态分布)GammaDistribution(Gamma分布)Beta Distribution(Beta分布)Dirichlet Distribution(狄利克雷分布)Rayleigh Distribution(瑞利分布)Cauchy Distribution(柯西分布)Weibull Distribution (韦伯分布)

   Three Sampling Distribution(三大抽样分布)Chi-squareDistribution(卡方分布)t-distribution(t-distribution)F-distribution(F-分布)

Data Pre-processing(数据预处理)

Missing Value Imputation(缺失值填充)Discretization(离散化)Mapping(映射)Normalization(归一化/标准化)

Sampling(采样)

Simple Random Sampling(简单随机采样)OfflineSampling(离线等可能K采样)Online Sampling(在线等可能K采样)Ratio-based Sampling(等比例随机采样)Acceptance-RejectionSampling(接受-拒绝采样)Importance Sampling(重要性采样)MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)

Clustering(聚类)

K-MeansK-Mediods,二分K-MeansFK-MeansCanopySpectral-KMeans(谱聚类)GMM-EM(混合高斯模型-期望最大化算法解决)K-PototypesCLARANS(基于划分)BIRCH(基于层次)CURE(基于层次)DBSCAN(基于密度)CLIQUE(基于密度和基于网格)

Classification&Regression(分类&回归)

LR(Linear Regression 线性回归)LR(LogisticRegression逻辑回归)SR(Softmax Regression 多分类逻辑回归)GLM(GeneralizedLinear Model 广义线性模型)RR(Ridge Regression 岭回归/L2正则最小二乘回归)LASSO(Least Absolute Shrinkage andSelectionator Operator L1正则最小二乘回归) RF(随机森林)DT(DecisionTree决策树)GBDT(Gradient BoostingDecision Tree 梯度下降决策树)CART(ClassificationAnd Regression Tree 分类回归树)KNN(K-Nearest Neighbor K近邻)SVM(Support VectorMachine)KF(KernelFunction 核函数PolynomialKernel Function 多项式核函数、Guassian KernelFunction 高斯核函数/Radial BasisFunction RBF径向基函数、String KernelFunction 字符串核函数) NB(Naive Bayes 朴素贝叶斯)BN(Bayesian Network/Bayesian Belief Network/ Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络)LDA(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别)EL(Ensemble Learning集成学习BoostingBaggingStacking)AdaBoost(Adaptive Boosting 自适应增强)MEM(MaximumEntropy Model最大熵模型)

Effectiveness Evaluation(分类效果评估)

    Confusion Matrix(混淆矩阵)Precision(精确度)Recall(召回率)Accuracy(准确率)F-score(F得分)ROC Curve(ROC曲线)AUC(AUC面积)LiftCurve(Lift曲线KS Curve(KS曲线)

PGM(Probabilistic Graphical Models概率图模型)

BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 贝叶斯网络/贝叶斯信度网络/信念网络)MC(Markov Chain 马尔科夫链)HMM(HiddenMarkov Model 马尔科夫模型)MEMM(Maximum Entropy Markov Model 最大熵马尔科夫模型)CRF(ConditionalRandom Field 条件随机场)MRF(MarkovRandom Field 马尔科夫随机场)

NN(Neural Network神经网络)

ANN(Artificial Neural Network 人工神经网络)BP(Error BackPropagation 误差反向传播)

Deep Learning(深度学习)

Auto-encoder(自动编码器)SAE(Stacked Auto-encoders堆叠自动编码器:Sparse Auto-encoders稀疏自动编码器、Denoising Auto-encoders去噪自动编码器、Contractive Auto-encoders 收缩自动编码器)RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机)DBN(Deep Belief Network 深度信念网络)CNN(ConvolutionalNeural Network 卷积神经网络)Word2Vec(词向量学习模型)

DimensionalityReduction(降维)                 

LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别,PCA(Principal Component Analysis 主成分分析)ICA(IndependentComponent Analysis 独立成分分析)SVD(Singular Value Decomposition 奇异值分解)FA(FactorAnalysis 因子分析法)

Text Mining(文本挖掘)

VSM(Vector Space Model向量空间模型)Word2Vec(词向量学习模型)TF(Term Frequency词频)TF-IDF(Term Frequency-Inverse DocumentFrequency 词频-逆向文档频率)MI(MutualInformation 互信息)ECE(Expected Cross Entropy 期望交叉熵)QEMI(二次信息熵)IG(InformationGain 信息增益)IGR(Information Gain Ratio 信息增益率)Gini(基尼系数)x2 Statistic(x2统计量)TEW(TextEvidence Weight文本证据权)OR(Odds Ratio 优势率)N-Gram ModelLSA(Latent Semantic Analysis 潜在语义分析)PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潜在语义分析)LDA(Latent DirichletAllocation 潜在狄利克雷模型)

Association Mining(关联挖掘)

AprioriFP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法)AprioriAllSpade

Recommendation Engine(推荐引擎)

DBR(Demographic-based Recommendation 基于人口统计学的推荐)CBR(Context-basedRecommendation 基于内容的推荐)CF(Collaborative Filtering协同过滤)UCF(User-basedCollaborative Filtering Recommendation 基于用户的协同过滤推荐)ICF(Item-basedCollaborative Filtering Recommendation 基于项目的协同过滤推荐)

Similarity Measure&Distance Measure(相似性与距离度量)

Euclidean Distance(欧式距离)ManhattanDistance(曼哈顿距离)Chebyshev Distance(切比雪夫距离)MinkowskiDistance(闵可夫斯基距离)Standardized Euclidean Distance(标准化欧氏距离)MahalanobisDistance(马氏距离)Cos(Cosine 余弦)HammingDistance/Edit Distance(汉明距离/编辑距离)JaccardDistance(杰卡德距离)Correlation Coefficient Distance(相关系数距离)InformationEntropy(信息熵)KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相对熵)

Optimization(最优化)

Non-constrainedOptimization(无约束优化)Cyclic VariableMethods(变量轮换法)Pattern Search Methods(模式搜索法)VariableSimplex Methods(可变单纯形法)Gradient Descent Methods(梯度下降法)Newton Methods(牛顿法)Quasi-NewtonMethods(拟牛顿法)Conjugate Gradient Methods(共轭梯度法)

ConstrainedOptimization(有约束优化)Approximation Programming Methods(近似规划法)FeasibleDirection Methods(可行方向法)Penalty Function Methods(罚函数法)Multiplier Methods(乘子法)

Heuristic Algorithm(启发式算法)SA(SimulatedAnnealing,模拟退火算法)GA(genetic algorithm遗传算法)

Feature Selection(特征选择算法)

Mutual Information(互信息)DocumentFrequence(文档频率)Information Gain(信息增益)Chi-squared Test(卡方检验)Gini(基尼系数)

Outlier Detection(异常点检测算法)

Statistic-based(基于统计)Distance-based(基于距离)Density-based(基于密度)Clustering-based(基于聚类)

Learning to Rank(基于学习的排序)

PointwiseMcRank

PairwiseRankingSVMRankNetFrankRankBoost

ListwiseAdaRankSoftRankLamdaMART

Tool(工具)

MPIHadoop生态圈,SparkBSPWekaMahoutPyBrain…

后面有机会将针对这些进行知识(面)的总结,有错误请指正... 

常用的机器学习知识(点)