首页 > 代码库 > 分布式消息队列kafka
分布式消息队列kafka
replication factor控制有多少个server将会复制各条被写入Topic的消息。如果该值为3,那么可以有2台server停止工作的情况下,消费端以访问到消息。我们建议你设置该值为2或者3,这样就可以在重启服务时而不影响消费端消费数据。
java -cp KafkaOffsetMonitor-assembly-0.2.0.jar com.quantifind.kafka.offsetapp.OffsetGetterWeb --zk zk-server1,zk-server2 --port 8080 --refresh 10.seconds --retain 2.days 1>>stdout.log 2>>stderr.log &
里面引用了googleapi的一个angular.js 被墙了。。。。主要的设计元素
Kafka之所以和其它绝大多数信息系统不同,是因为下面这几个为数不多的比较重要的设计决策:
- Kafka在设计之时为就将持久化消息作为通常的使用情况进行了考虑。
- 主要的设计约束是吞吐量而不是功能。
- 有关哪些数据已经被使用了的状态信息保存为数据使用者(consumer)的一部分,而不是保存在服务器之上。
- Kafka是一种显式的分布式系统。它假设,数据生产者(producer)、代理(brokers)和数据使用者(consumer)分散于多台机器之上。
参数 | 说明(解释) |
broker.id =0 | 每一个broker在集群中的唯一表示,要求是正数。当该服务器的IP地址发生改变时,broker.id没有变化,则不会影响consumers的消息情况 |
log.dirs=/data/kafka-logs | kafka数据的存放地址,多个地址的话用逗号分割,多个目录分布在不同磁盘上可以提高读写性能 /data/kafka-logs-1,/data/kafka-logs-2 |
port =9092 | broker server服务端口 |
message.max.bytes =6525000 | 表示消息体的最大大小,单位是字节 |
num.network.threads =4 | broker处理消息的最大线程数,一般情况下数量为cpu核数 |
num.io.threads =8 | broker处理磁盘IO的线程数,数值为cpu核数2倍 |
background.threads =4 | 一些后台任务处理的线程数,例如过期消息文件的删除等,一般情况下不需要去做修改 |
queued.max.requests =500 | 等待IO线程处理的请求队列最大数,若是等待IO的请求超过这个数值,那么会停止接受外部消息,应该是一种自我保护机制。 |
host.name | broker的主机地址,若是设置了,那么会绑定到这个地址上,若是没有,会绑定到所有的接口上,并将其中之一发送到ZK,一般不设置 |
socket.send.buffer.bytes=100*1024 | socket的发送缓冲区,socket的调优参数SO_SNDBUFF |
socket.receive.buffer.bytes =100*1024 | socket的接受缓冲区,socket的调优参数SO_RCVBUFF |
socket.request.max.bytes =100*1024*1024 | socket请求的最大数值,防止serverOOM,message.max.bytes必然要小于socket.request.max.bytes,会被topic创建时的指定参数覆盖 |
log.segment.bytes =1024*1024*1024 | topic的分区是以一堆segment文件存储的,这个控制每个segment的大小,会被topic创建时的指定参数覆盖 |
log.roll.hours =24*7 | 这个参数会在日志segment没有达到log.segment.bytes设置的大小,也会强制新建一个segment会被 topic创建时的指定参数覆盖 |
log.cleanup.policy = delete | 日志清理策略选择有:delete和compact主要针对过期数据的处理,或是日志文件达到限制的额度,会被 topic创建时的指定参数覆盖 |
log.retention.minutes=300 或 log.retention.hours=24 | 数据文件保留多长时间, 存储的最大时间超过这个时间会根据log.cleanup.policy设置数据清除策略 log.retention.bytes和log.retention.minutes或log.retention.hours任意一个达到要求,都会执行删除
有2删除数据文件方式: 按照文件大小删除:log.retention.bytes 按照2中不同时间粒度删除:分别为分钟,小时 |
log.retention.bytes=-1 | topic每个分区的最大文件大小,一个topic的大小限制 =分区数*log.retention.bytes。-1没有大小限log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖 |
log.retention.check.interval.ms=5minutes | 文件大小检查的周期时间,是否处罚 log.cleanup.policy中设置的策略 |
log.cleaner.enable=false | 是否开启日志清理 |
log.cleaner.threads = 2 | 日志清理运行的线程数 |
log.cleaner.io.max.bytes.per.second=None | 日志清理时候处理的最大大小 |
log.cleaner.dedupe.buffer.size=500*1024*1024 | 日志清理去重时候的缓存空间,在空间允许的情况下,越大越好 |
log.cleaner.io.buffer.size=512*1024 | 日志清理时候用到的IO块大小一般不需要修改 |
log.cleaner.io.buffer.load.factor =0.9 | 日志清理中hash表的扩大因子一般不需要修改 |
log.cleaner.backoff.ms =15000 | 检查是否处罚日志清理的间隔 |
log.cleaner.min.cleanable.ratio=0.5 | 日志清理的频率控制,越大意味着更高效的清理,同时会存在一些空间上的浪费,会被topic创建时的指定参数覆盖 |
log.cleaner.delete.retention.ms =1day | 对于压缩的日志保留的最长时间,也是客户端消费消息的最长时间,同log.retention.minutes的区别在于一个控制未压缩数据,一个控制压缩后的数据。会被topic创建时的指定参数覆盖 |
log.index.size.max.bytes =10*1024*1024 | 对于segment日志的索引文件大小限制,会被topic创建时的指定参数覆盖 |
log.index.interval.bytes =4096 | 当执行一个fetch操作后,需要一定的空间来扫描最近的offset大小,设置越大,代表扫描速度越快,但是也更好内存,一般情况下不需要搭理这个参数 |
log.flush.interval.messages=None 例如log.flush.interval.messages=1000 表示每当消息记录数达到1000时flush一次数据到磁盘 | log文件”sync”到磁盘之前累积的消息条数,因为磁盘IO操作是一个慢操作,但又是一个”数据可靠性"的必要手段,所以此参数的设置,需要在"数据可靠性"与"性能"之间做必要的权衡.如果此值过大,将会导致每次"fsync"的时间较长(IO阻塞),如果此值过小,将会导致"fsync"的次数较多,这也意味着整体的client请求有一定的延迟.物理server故障,将会导致没有fsync的消息丢失. |
log.flush.scheduler.interval.ms =3000 | 检查是否需要固化到硬盘的时间间隔 |
log.flush.interval.ms = None 例如:log.flush.interval.ms=1000 表示每间隔1000毫秒flush一次数据到磁盘 | 仅仅通过interval来控制消息的磁盘写入时机,是不足的.此参数用于控制"fsync"的时间间隔,如果消息量始终没有达到阀值,但是离上一次磁盘同步的时间间隔达到阀值,也将触发. |
log.delete.delay.ms =60000 | 文件在索引中清除后保留的时间一般不需要去修改 |
log.flush.offset.checkpoint.interval.ms =60000 | 控制上次固化硬盘的时间点,以便于数据恢复一般不需要去修改 |
auto.create.topics.enable =true | 是否允许自动创建topic,若是false,就需要通过命令创建topic |
default.replication.factor =1 | 是否允许自动创建topic,若是false,就需要通过命令创建topic |
num.partitions =1 | 每个topic的分区个数,若是在topic创建时候没有指定的话会被topic创建时的指定参数覆盖 |
|
|
以下是kafka中Leader,replicas配置参数 |
|
controller.socket.timeout.ms =30000 | partition leader与replicas之间通讯时,socket的超时时间 |
controller.message.queue.size=10 | partition leader与replicas数据同步时,消息的队列尺寸 |
replica.lag.time.max.ms =10000 | replicas响应partition leader的最长等待时间,若是超过这个时间,就将replicas列入ISR(in-sync replicas),并认为它是死的,不会再加入管理中 |
replica.lag.max.messages =4000 | 如果follower落后与leader太多,将会认为此follower[或者说partition relicas]已经失效 ##通常,在follower与leader通讯时,因为网络延迟或者链接断开,总会导致replicas中消息同步滞后 ##如果消息之后太多,leader将认为此follower网络延迟较大或者消息吞吐能力有限,将会把此replicas迁移 ##到其他follower中. ##在broker数量较少,或者网络不足的环境中,建议提高此值. |
replica.socket.timeout.ms=30*1000 | follower与leader之间的socket超时时间 |
replica.socket.receive.buffer.bytes=64*1024 | leader复制时候的socket缓存大小 |
replica.fetch.max.bytes =1024*1024 | replicas每次获取数据的最大大小 |
replica.fetch.wait.max.ms =500 | replicas同leader之间通信的最大等待时间,失败了会重试 |
replica.fetch.min.bytes =1 | fetch的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会阻塞,直到满足条件 |
num.replica.fetchers=1 | leader进行复制的线程数,增大这个数值会增加follower的IO |
replica.high.watermark.checkpoint.interval.ms =5000 | 每个replica检查是否将最高水位进行固化的频率 |
controlled.shutdown.enable =false | 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker |
controlled.shutdown.max.retries =3 | 控制器关闭的尝试次数 |
controlled.shutdown.retry.backoff.ms =5000 | 每次关闭尝试的时间间隔 |
leader.imbalance.per.broker.percentage =10 | leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡 |
leader.imbalance.check.interval.seconds =300 | 检查leader是否不平衡的时间间隔 |
offset.metadata.max.bytes | 客户端保留offset信息的最大空间大小 |
kafka中zookeeper参数配置 |
|
zookeeper.connect = localhost:2181 | zookeeper集群的地址,可以是多个,多个之间用逗号分割hostname1:port1,hostname2:port2,hostname3:port3 |
zookeeper.session.timeout.ms=6000 | ZooKeeper的最大超时时间,就是心跳的间隔,若是没有反映,那么认为已经死了,不易过大 |
zookeeper.connection.timeout.ms =6000 | ZooKeeper的连接超时时间 |
zookeeper.sync.time.ms =2000 | ZooKeeper集群中leader和follower之间的同步实际那 |
1.网络和io操作线程配置优化
# broker处理消息的最大线程数
num.network.threads=xxx
# broker处理磁盘IO的线程数
num.io.threads=xxx
建议配置:
一般num.network.threads主要处理网络io,读写缓冲区数据,基本没有io等待,配置线程数量为cpu核数加1.
num.io.threads主要进行磁盘io操作,高峰期可能有些io等待,因此配置需要大些。配置线程数量为cpu核数2倍,最大不超过3倍.
2.log数据文件刷新策略
为了大幅度提高producer写入吞吐量,需要定期批量写文件。
建议配置:
# 每当producer写入10000条消息时,刷数据到磁盘
log.flush.interval.messages=10000
# 每间隔1秒钟时间,刷数据到磁盘
log.flush.interval.ms=1000
3.日志保留策略配置
当kafka server的被写入海量消息后,会生成很多数据文件,且占用大量磁盘空间,如果不及时清理,可能磁盘空间不够用,kafka默认是保留7天。
建议配置:
# 保留三天,也可以更短
log.retention.hours=72
# 段文件配置1GB,有利于快速回收磁盘空间,重启kafka加载也会加快(如果文件过小,则文件数量比较多,
# kafka启动时是单线程扫描目录(log.dir)下所有数据文件)
log.segment.bytes=1073741824
4.配置jmx服务
kafka server中默认是不启动jmx端口的,需要用户自己配置
vim bin/kafka-run-class.sh
#最前面添加一行
JMX_PORT=8060
- kafka直接推送日志文件:tail -n 0 -f /www/nh-nginx02/access.log | bin/kafka-console-producer.sh --broker-list 192.168.1.1:9092 --topic sb-nginx03
分布式消息队列kafka