首页 > 代码库 > UVA 763 Fibinary Numbers
UVA 763 Fibinary Numbers
题意讲某个二进制按照规则每一位对应斐波那契数生成新的数字,然后2个数字求和。再求由该规则生成的二进制串。并且要求尽量用更大项的fib数(题目提示不能由连续的1就是2个连续的1(11)不如100更优)
用大数处理出100项fib。然后模拟交替置位位0或者1,输出
#include <map>#include <set>#include <list>#include <cmath>#include <ctime>#include <deque>#include <stack>#include <queue>#include <cctype>#include <cstdio>#include <string>#include <vector>#include <climits>#include <cstdlib>#include <cstring>#include <iostream>#include <algorithm>#define LL long long#define PI 3.1415926535897932626using namespace std;int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}const int numlen=105;struct bign { int len, s[numlen]; bign() { memset(s, 0, sizeof(s)); len = 1; } bign(int num) { *this = num; } bign(const char *num) { *this = num; } bign operator = (const int num) { char s[numlen]; sprintf(s, "%d", num); *this = s; return *this; } bign operator = (const char *num) { len = strlen(num); while(len > 1 && num[0] == ‘0‘) num++, len--; for(int i = 0;i < len; i++) s[i] = num[len-i-1] - ‘0‘; return *this; } void deal() { while(len > 1 && !s[len-1]) len--; } bign operator + (const bign &a) const { bign ret; ret.len = 0; int top = max(len, a.len) , add = 0; for(int i = 0;add || i < top; i++) { int now = add; if(i < len) now += s[i]; if(i < a.len) now += a.s[i]; ret.s[ret.len++] = now%10; add = now/10; } return ret; } bign operator - (const bign &a) const { bign ret; ret.len = 0; int cal = 0; for(int i = 0;i < len; i++) { int now = s[i] - cal; if(i < a.len) now -= a.s[i]; if(now >= 0) cal = 0; else { cal = 1; now += 10; } ret.s[ret.len++] = now; } ret.deal(); return ret; } bign operator * (const bign &a) const { bign ret; ret.len = len + a.len; for(int i = 0;i < len; i++) { for(int j = 0;j < a.len; j++) ret.s[i+j] += s[i]*a.s[j]; } for(int i = 0;i < ret.len; i++) { ret.s[i+1] += ret.s[i]/10; ret.s[i] %= 10; } ret.deal(); return ret; } bign operator * (const int num) {// printf("num = %d\n", num); bign ret; ret.len = 0; int bb = 0; for(int i = 0;i < len; i++) { int now = bb + s[i]*num; ret.s[ret.len++] = now%10; bb = now/10; } while(bb) { ret.s[ret.len++] = bb % 10; bb /= 10; } ret.deal(); return ret; } bign operator / (const bign &a) const { bign ret, cur = 0; ret.len = len; for(int i = len-1;i >= 0; i--) { cur = cur*10; cur.s[0] = s[i]; while(cur >= a) { cur -= a; ret.s[i]++; } } ret.deal(); return ret; } bign operator % (const bign &a) const { bign b = *this / a; return *this - b*a; } bign operator += (const bign &a) { *this = *this + a; return *this; } bign operator -= (const bign &a) { *this = *this - a; return *this; } bign operator *= (const bign &a) { *this = *this * a; return *this; } bign operator /= (const bign &a) { *this = *this / a; return *this; } bign operator %= (const bign &a) { *this = *this % a; return *this; } bool operator < (const bign &a) const { if(len != a.len) return len < a.len; for(int i = len-1;i >= 0; i--) if(s[i] != a.s[i]) return s[i] < a.s[i]; return false; } bool operator > (const bign &a) const { return a < *this; } bool operator <= (const bign &a) const { return !(*this > a); } bool operator >= (const bign &a) const { return !(*this < a); } bool operator == (const bign &a) const { return !(*this > a || *this < a); } bool operator != (const bign &a) const { return *this > a || *this < a; } string str() const { string ret = ""; for(int i = 0;i < len; i++) ret = char(s[i] + ‘0‘) + ret; return ret; }};istream& operator >> (istream &in, bign &x) { string s; in >> s; x = s.c_str(); return in;}ostream& operator << (ostream &out, const bign &x) { out << x.str(); return out;}char a[numlen],b[numlen];bign fib[numlen];void init(){ fib[0]=1;fib[1]=1; fib[2]=2; for (int i=3;i<numlen;i++) fib[i]=fib[i-1]+fib[i-2];}bign trans(char *a){ bign sum=0; int len=strlen(a); for (int i=1;i<=len;i++) if (a[i-1]==‘1‘) sum+=fib[len-i+1]; //cout<<sum<<endl; return sum;}bign tmp;void slove(bign sum){ if (sum==tmp) {puts("0");return ;} int i=1; for (i=1;i<numlen;i++) if (fib[i]>sum) break; i--; bool flag=true; for (;i>0;i--) { //cout<<sum<<‘ ‘<<fib[i]<<endl; if (fib[i]<=sum && flag) { printf("1"); sum=sum-fib[i]; flag=false; } else { printf("0"); flag=true; } } putchar(‘\n‘);}int main(){ init(); bool first=false; while (scanf("%s%s",a,b)!=EOF) { if (first) putchar(‘\n‘); else first=true; tmp=0; bign num1=trans(a); bign num2=trans(b); bign sum=num1+num2; //cout<<sum<<endl; //for (int i=1;i<=10;i++) cout<<fib[i]<<‘ ‘;cout<<endl; slove(sum); } return 0;}
UVA 763 Fibinary Numbers
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。