首页 > 代码库 > hadoop2.5.2学习13-MR之新浪微博-DF的实现
hadoop2.5.2学习13-MR之新浪微博-DF的实现
本文接上篇hadoop2.5.2学习13-MR之新浪微博TF-IDF算法简介
上篇微博实现了第一个mappreduce, 统计的词频TF和微博总数N
本文将统计DF,即每个词条在多少个文章中出现。我们只需要对一个mapreduce的输出结果的词频数进行统计,就可以得到DF
主要是读取一个的mapreduce的四个文件, 从中区分TF数据的三个文件
通过获取Filesplit碎片段,
FileSplit fileSplit = (FileSplit) context.getInputSplit();
因为在mapreduce中原始数据会拆分成split作为map的输入数据,
反过来, 每个map都有一个split与之对应, 而且每个split都属于一个文件,
那么通过对split进行过滤,不考虑split为part-r-00003, 及微博总数统计的那个输出文件,就可以的到其他三个文件。
package com.chb.weibo2;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
/**
* 统计idf
* 输入数据:w+"_"+id
*/
public class SecondMapper extends Mapper<Text, Text, Text, IntWritable>{
@Override
protected void map(Text key, Text value, Context context)
throws IOException, InterruptedException {
FileSplit fileSplit = (FileSplit) context.getInputSplit();
/**
* 第一个的MR的输出分四个reduce,生成四个文件,在自定义分区中,最后一个分区是计算微博总数
*
*/
if (!fileSplit.getPath().getName().equals("part-0003")) {
if (key.toString().split("_").length == 2 ) {
String w = key.toString().split("_")[0];
String id = key.toString().split("_")[1];
context.write(new Text(w), new IntWritable(1));
}
}
}
}
在reduce中就是进行统计求和
package com.chb.weibo2;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class SecondReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable iw : values) {
sum += iw.get();
}
context.write(key, new IntWritable(sum));
}
}
执行代码:
package com.chb.weibo2;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class SecondRunJob {
public static void main(String[] args) throws Exception {
System.setProperty("HADOOP_USER_NAME", "chb");
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
Job job = Job.getInstance();
job.setJobName("SecondRunJob");
job.setJar("C:\\Users\\12285\\Desktop\\weibo.jar");
job.setJarByClass(SecondRunJob.class);
job.setMapperClass(SecondMapper.class);
job.setReducerClass(SecondReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setInputFormatClass(KeyValueTextInputFormat.class);
Path in = new Path("/user/chb/output/outweibo1");
FileInputFormat.addInputPath(job, in);
Path out = new Path("/user/chb/output/outweibo2");
if (fs.exists(out)) {
fs.delete(out, true);
}
FileOutputFormat.setOutputPath(job, out);
boolean f = job.waitForCompletion(true);
if (f) {
System.out.println("第二次job执行完成。。。");
}
}
}
DF统计结果:
统计出每个词条的DF, 即在多少篇微博中出现过。
些 1
亢奋 2
交易 1
交易日 2
交给 1
亦 1
产品 4
享 14
享受 6
享用 7
京东 1
亮 1
亮相 7
亲 10
亲子 2
亲密 1
3第三个mapreduce, 计算词条权重
经过第一个mapreduce计算出TF, N
第二个mapreduce计算出DF
在这三个数据中,TF数据最多, 如果TF数据达到T级别, 每个分片1G, 也需要上千个mapTask,
要加载上千次N和DF数据, 这是非常耗资源的,
首先N和DF的数据很小, N只有一条数据, 词库的常用词不多, DF那就不大,
我们将小表加载到缓存中,
//将小表加载到内存中,微博总数
job.addCacheFile(new Path("/user/chb/output/weibo1/part-r-00003").toUri());
//df
job.addCacheFile(new Path("/user/chb/output/weibo1/part-r-00001").toUri());
在map的setup方法中读取,setup 对每个mapTask只执行一次, 进行初始化。
//通过使用DistributedCache ,将微博总数,和DF统计的文件读入内存中,以map的形式存储
HashMap<String, Integer> countMap = null;
HashMap<String, Integer> dfMap = null;
@Override
protected void setup(Context context)
throws IOException, InterruptedException {
//通过contex获取存在缓存中的文件的uri
URI[] uris = context.getCacheFiles();
if (uris != null) {
for (URI uri : uris) {
//如何读取文件内容?
BufferedReader br = new BufferedReader(new FileReader(uri.getPath()));
if (uri.getPath().endsWith("part-r-00003")) {//获取微博总数的文件
countMap = new HashMap<String, Integer>();
//统计微博总数的文件中只有一行, count 数量
String line = br.readLine();
if (line.startsWith("count")) {
countMap.put("count", Integer.parseInt(line.split("\t")[1]));
}
}else if(uri.getPath().endsWith("part-r-00000")){//获取df文件
String line = br.readLine();
//line: word 在多少个文章中出现
String word = line.split("\t")[0];
String count = line.split("\t")[1];
dfMap.put(word, Integer.parseInt(count));
}
br.close();
}
}
}
上面的代码有问题,一直报错 /user/chb/output/outweibo1/part-r-00003
不存在,
我将获取path的那行单独出来, 就可以了,但是没有明白为什么。
//如何读取文件内容?
if (uri.getPath().endsWith("part-r-00003")) {//获取微博总数的文件
Path path = new Path(uri.getPath());
BufferedReader br = new BufferedReader(new FileReader(path.getName()));
countMap = new HashMap<String, Integer>();
//统计微博总数的文件中只有一行, count 数量
String line = br.readLine();
if (line.startsWith("count")) {
countMap.put("count", Integer.parseInt(line.split("\t")[1]));
}
br.close();
}
reduce
reduce就简单了, 只是将每篇微博的各个词条的权重以此输出:
package com.chb.weibo3;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class LastReducer extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException,
InterruptedException {
StringBuilder sb = new StringBuilder();
for (Text text : values) {
sb.append(text.toString()+"\t");
}
context.write(key, new Text(sb.toString()));
}
}
执行程序
package com.chb.weibo3;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class LastRunJob {
public static void main(String[] args) throws Exception {
System.setProperty("HADOOP_USER_NAME", "chb");
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
Job job = Job.getInstance();
job.setJar("C:\\Users\\12285\\Desktop\\weibo3.jar");
job.setJarByClass(LastRunJob.class);
job.setJobName("LastRunJob");
job.setMapperClass(LastMapper.class);
job.setReducerClass(LastReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setInputFormatClass(KeyValueTextInputFormat.class);
//将小表加载到内存中,微博总数
job.addCacheFile(new Path("hdfs://TEST:9000/user/chb/output/outweibo1/part-r-00003").toUri());
//df
job.addCacheFile(new Path("hdfs://TEST:9000/user/chb/output/outweibo2/part-r-00000").toUri());
FileInputFormat.addInputPath(job, new Path("hdfs://TEST:9000/user/chb/output/outweibo1/"));
Path out = new Path("hdfs://TEST:9000/user/chb/output/outweibo3/");
if (fs.exists(out)) {
fs.delete(out, true);
}
FileOutputFormat.setOutputPath(job, out);
boolean f = job.waitForCompletion(true);
if (f) {
System.out.println("最后一个mapreduce执行完成");
}
}
}
结果如下:
3823890201582094 我:7.783640596221253 香喷喷:12.553286978683289 多:7.65728279297819 睡:8.713417653379183 豆浆:13.183347464017316 早晨:8.525359754082631 想约:10.722584331418851 喝上:10.722584331418851 就可以:10.525380377809771 煮:10.525380377809771 约:7.16703787691222 电饭煲:11.434055402812444 的:2.1972245773362196 就:14.550344638905543 好:13.328818040700815 后:8.37930948405285 自动:12.108878692538742 今天:5.780743515792329 油条:9.54136924893133 饭:11.166992617563398 豆浆机:4.1588830833596715 一小时:10.927663610051221 几小时:13.130529940070723 自然:13.130529940070723 还:8.580918882296782 让:7.824046010856292 了:13.183347464017316 起床:9.436997742590188
3823890210294392 约:3.58351893845611 我:3.8918202981106265 豆浆:4.394449154672439 今天:5.780743515792329 了:4.394449154672439 油条:9.54136924893133
3823890235477306 一会儿:15.327754517406941 去:5.991464547107982 儿子:9.911654115202522 约:3.58351893845611 动物园:12.553286978683289 带:9.54136924893133 起:9.043577154098081
3823890239358658 继续:11.166992617563398 支持:7.522400231387125
3823890256464940 次:13.130529940070723 起来:7.052721049232323 约:3.58351893845611 饭:11.166992617563398 去:5.991464547107982
3823890264861035 约:3.58351893845611 我:3.8918202981106265 了:4.394449154672439 吃饭:9.326878188224134 哦:7.221835825288449
3823890281649563 和家人:11.166992617563398 一起:6.089044875446846 吃个:12.108878692538742 相约:8.788898309344878 饭:11.166992617563398
3823890285529671 了:4.394449154672439 今天:5.780743515792329 广场:12.553286978683289 滑旱冰:15.327754517406941 一起:6.089044875446846 约:3.58351893845611
3823890294242412 九阳:2.1972245773362196 我:3.8918202981106265 全球:12.553286978683289 早餐:6.516193076042964 双:5.780743515792329 你:6.591673732008658 一起:6.089044875446846 首发:6.516193076042964 预约:5.545177444479562 啦:6.8679744089702925 即将:11.434055402812444 吃:6.8679744089702925 要约:10.187500401613525 豆浆机:4.1588830833596715
3823890314914825 一起:6.089044875446846 约:3.58351893845611 去:5.991464547107982 逛街:10.047761041692553 姐妹:11.744235578950832 今天:5.780743515792329 天气晴好:13.94146015628705 起:9.043577154098081 们:7.700295203420117
3823890323625419 邮:11.166992617563398 全国:12.108878692538742 jyl-:15.327754517406941 包:9.54136924893133 joyoung:9.656627474604603 九阳:2.1972245773362196
3823890335901756 的:2.1972245773362196 今年:12.553286978683289 暖和:12.553286978683289 果断:15.327754517406941 出来:11.434055402812444 逛街:10.047761041692553 一天:9.780698256443507 最:8.37930948405285 今天是:10.722584331418851
3823890364788305 出:11.166992617563398 来了:8.15507488781144 去去:13.94146015628705 去:5.991464547107982 好友:12.108878692538742 赏花:11.744235578950832 踏青:9.780698256443507 约:3.58351893845611 一起:6.089044875446846 春天:7.16703787691222
3823890369489295 让:7.824046010856292 练:26.261059880141445 下载:13.130529940070723 九阳:2.1972245773362196 吧:6.664409020350408 我:3.8918202981106265 九阴真经:13.94146015628705 免费:12.553286978683289 挂:15.327754517406941 了吧:15.327754517406941 平湖:15.327754517406941 走火入魔:11.434055402812444 真经:10.927663610051221 小子:15.327754517406941 开:10.525380377809771 你:6.591673732008658 三叉神经:15.327754517406941 在:6.802394763324311 毁了:15.327754517406941 改:15.327754517406941
3823890373686361 一起:6.089044875446846 约:3.58351893845611 理发:12.553286978683289 了:4.394449154672439 小伙伴:9.436997742590188 去:5.991464547107982
3823890378201539 吃:6.8679744089702925 得很:13.130529940070723 啊:8.1886891244442 今天:5.780743515792329 姐妹:11.744235578950832 开心:8.788898309344878 去:5.991464547107982 玩:8.439015410352214 周末:8.317766166719343 逛街:10.047761041692553 了:4.394449154672439 约:3.58351893845611 美食:8.954673628956414
hadoop2.5.2学习13-MR之新浪微博-DF的实现
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。