首页 > 代码库 > Maximum Product Subarray

Maximum Product Subarray

Leetcode 更新题目啦!!!

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

首先想到就是动态规划利用path[i][j] 记录i到j 的乘积,计算过程中更新最大值代码如下:

public class Solution {    	public int maxProduct(int[] A) {		int len = A.length;		int [][] path = new int[len][];		for(int i=0;i<len;i++){			path[i] = new int[len];		}		int MaxPro = Integer.MIN_VALUE;		path[0][0] = A[0];		for(int i=1;i<len;i++){			path[i][i] = A[i];			path[0][i] = path[0][i-1] * A[i];			if(A[i]>MaxPro){				MaxPro = A[i];			}			if(path[0][i]>MaxPro){				MaxPro = path[0][i];			}		}		for(int i=1;i<len;i++){			for(int j=i+1;j<len;j++){				path[i][j] = path[i][j-1] * A[j];				if(path[i][j]>MaxPro){					MaxPro = path[i][j];				}			}		}		return MaxPro;	}}


提交发现出现超时错误,因为测试案例中有一个很长的数组,上面方法需要开辟很大的数组并填写数组比较耗时O(n^2)。

其实分析一下可以发现,一次循环其实就可以解决问题,因为数组中出现正数负数,所以我们需要记录到某个位置时的最大值与最小值,因为最小值可能在下一步乘以负数就变成最大值啦。

代码如下:

public class Solution {    	public int maxProduct(int[] A){    	    if(A.length < 1){			return 0;		}		int min_temp = A[0];		int max_temp = A[0];		int result = A[0];;		for(int i=1;i<A.length;i++){			int a = max_temp * A[i];			int b = min_temp * A[i];			int c = A[i];			max_temp = Math.max(Math.max(a, b), c);			min_temp = Math.min(Math.min(a, b), c);			result = max_temp>result? max_temp:result;		}		return result;	}}


 

Maximum Product Subarray