首页 > 代码库 > Maximum Product Subarray
Maximum Product Subarray
Leetcode 更新题目啦!!!
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
首先想到就是动态规划利用path[i][j] 记录i到j 的乘积,计算过程中更新最大值代码如下:
public class Solution { public int maxProduct(int[] A) { int len = A.length; int [][] path = new int[len][]; for(int i=0;i<len;i++){ path[i] = new int[len]; } int MaxPro = Integer.MIN_VALUE; path[0][0] = A[0]; for(int i=1;i<len;i++){ path[i][i] = A[i]; path[0][i] = path[0][i-1] * A[i]; if(A[i]>MaxPro){ MaxPro = A[i]; } if(path[0][i]>MaxPro){ MaxPro = path[0][i]; } } for(int i=1;i<len;i++){ for(int j=i+1;j<len;j++){ path[i][j] = path[i][j-1] * A[j]; if(path[i][j]>MaxPro){ MaxPro = path[i][j]; } } } return MaxPro; }}
提交发现出现超时错误,因为测试案例中有一个很长的数组,上面方法需要开辟很大的数组并填写数组比较耗时O(n^2)。
其实分析一下可以发现,一次循环其实就可以解决问题,因为数组中出现正数负数,所以我们需要记录到某个位置时的最大值与最小值,因为最小值可能在下一步乘以负数就变成最大值啦。
代码如下:
public class Solution { public int maxProduct(int[] A){ if(A.length < 1){ return 0; } int min_temp = A[0]; int max_temp = A[0]; int result = A[0];; for(int i=1;i<A.length;i++){ int a = max_temp * A[i]; int b = min_temp * A[i]; int c = A[i]; max_temp = Math.max(Math.max(a, b), c); min_temp = Math.min(Math.min(a, b), c); result = max_temp>result? max_temp:result; } return result; }}
Maximum Product Subarray
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。