首页 > 代码库 > Tensorflow实例集

Tensorflow实例集

这是使用 TensorFlow 实现流行的机器学习算法的教程汇集。本汇集的目标是让读者可以轻松通过案例深入 TensorFlow。

这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。

  • 项目地址: https://github.com/aymericdamien/TensorFlow-Examples

教程索引

0 - 先决条件

机器学习入门:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb

  • MNIST 数据集入门

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb

1 - 入门

Hello World:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb

  • 代码 https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py

基本操作:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py

2 - 基本模型

最近邻:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py

线性回归:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py

Logistic 回归:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py

3 - 神经网络

多层感知器:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/multilayer_perceptron.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/multilayer_perceptron.py

卷积神经网络:

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py

循环神经网络(LSTM):

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py

双向循环神经网络(LSTM):

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py

动态循环神经网络(LSTM)

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py

自编码器

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py

4 - 实用技术

保存和恢复模型

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py

图和损失可视化

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_basic.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py

Tensorboard——高级可视化

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py

5 - 多 GPU

多 GPU 上的基本操作

  • 笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_MultiGPU/multigpu_basics.ipynb

  • 代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_MultiGPU/multigpu_basics.py

数据集

一些案例需要 MNIST 数据集进行训练和测试。不要担心,运行这些案例时,该数据集会被自动下载下来(使用 input_data.py) 。MNIST 是一个手写数字的数据库,查看这个笔记了解关于该数据集的描述: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb

  • 官方网站: http://yann.lecun.com/exdb/mnist/

更多案例

接下来的示例来自 TFLearn ,这是一个为 TensorFlow 提供了简化的接口的库。你可以看看,这里有很多示例和预构建的运算和层。

  • 示例: https://github.com/tflearn/tflearn/tree/master/examples

  • 预构建的运算和层: http://tflearn.org/doc_index/#api

教程

TFLearn 快速入门。通过一个具体的机器学习任务学习 TFLearn 基础。开发和训练一个深度神经网络分类器。

  • 笔记:<https://github.com/tflearn/tflearn/blob/master/tutorials/intro/quickstart.md

基础

  • 线性回归,使用 TFLearn 实现线性回归: https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py

  • 逻辑运算符。使用 TFLearn 实现逻辑运算符: https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py

  • 权重保持。保存和还原一个模型: https://github.com/tflearn/tflearn/blob/master/examples/basics/weights_persistence.py

  • 微调。在一个新任务上微调一个预训练的模型: https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py

  • 使用 HDF5。使用 HDF5 处理大型数据集: https://github.com/tflearn/tflearn/blob/master/examples/basics/use_hdf5.py

  • 使用 DASK。使用 DASK 处理大型数据集: https://github.com/tflearn/tflearn/blob/master/examples/basics/use_dask.py

计算机视觉

  • 多层感知器。一种用于 MNIST 分类任务的多层感知实现: https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py

  • 卷积网络(MNIST)。用于分类 MNIST 数据集的一种卷积神经网络实现: https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py

  • 卷积网络(CIFAR-10)。用于分类 CIFAR-10 数据集的一种卷积神经网络实现: https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py

  • 网络中的网络。用于分类 CIFAR-10 数据集的 Network in Network 实现: https://github.com/tflearn/tflearn/blob/master/examples/images/network_in_network.py

  • Alexnet。将 Alexnet 应用于 Oxford Flowers 17 分类任务: https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py

  • VGGNet。将 VGGNet 应用于 Oxford Flowers 17 分类任务: https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py

  • VGGNet Finetuning (Fast Training)。使用一个预训练的 VGG 网络并将其约束到你自己的数据上,以便实现快速训练: https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network_finetuning.py

  • RNN Pixels。使用 RNN(在像素的序列上)分类图像: https://github.com/tflearn/tflearn/blob/master/examples/images/rnn_pixels.py

  • Highway Network。用于分类 MNIST 数据集的 Highway Network 实现: https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py

  • Highway Convolutional Network。用于分类 MNIST 数据集的 Highway Convolutional Network 实现: https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py

  • Residual Network (MNIST) ( https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py ).。应用于 MNIST 分类任务的一种瓶颈残差网络(bottleneck residual network): https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py

  • Residual Network (CIFAR-10)。应用于 CIFAR-10 分类任务的一种残差网络: https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py

  • Google Inception(v3)。应用于 Oxford Flowers 17 分类任务的谷歌 Inception v3 网络: https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py

  • 自编码器。用于 MNIST 手写数字的自编码器: https://github.com/tflearn/tflearn/blob/master/examples/images/autoencoder.py

自然语言处理

  • 循环神经网络(LSTM),应用 LSTM 到 IMDB 情感数据集分类任务: https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py

  • 双向 RNN(LSTM),将一个双向 LSTM 应用到 IMDB 情感数据集分类任务: https://github.com/tflearn/tflearn/blob/master/examples/nlp/bidirectional_lstm.py

  • 动态 RNN(LSTM),利用动态 LSTM 从 IMDB 数据集分类可变长度文本: https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py

  • 城市名称生成,使用 LSTM 网络生成新的美国城市名: https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_cityname.py

  • 莎士比亚手稿生成,使用 LSTM 网络生成新的莎士比亚手稿: https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py

  • Seq2seq,seq2seq 循环网络的教学示例: https://github.com/tflearn/tflearn/blob/master/examples/nlp/seq2seq_example.py

  • CNN Seq,应用一个 1-D 卷积网络从 IMDB 情感数据集中分类词序列: https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py

强化学习

Atari Pacman 1-step Q-Learning,使用 1-step Q-learning 教一台机器玩 Atari 游戏: https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py

其他

Recommender-Wide&Deep Network,推荐系统中 wide & deep 网络的教学示例: https://github.com/tflearn/tflearn/blob/master/examples/others/recommender_wide_and_deep.py

Notebooks

  • Spiral Classification Problem,对斯坦福 CS231n spiral 分类难题的 TFLearn 实现: https://github.com/tflearn/tflearn/blob/master/examples/notebooks/spiral.ipynb

可延展的 TensorFlow

  • 层,与 TensorFlow 一起使用  TFLearn 层: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py

  • 训练器,使用 TFLearn 训练器类训练任何 TensorFlow 图: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py

  • Bulit-in Ops,连同 TensorFlow 使用 TFLearn built-in 操作: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/builtin_ops.py

  • Summaries,连同 TensorFlow 使用 TFLearn summarizers: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/summaries.py

  • Variables,连同 TensorFlow 使用 TFLearn Variables: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/variables.py

 

来自:http://www.jiqizhixin.com/article/1648

Tensorflow实例集