首页 > 代码库 > kafka + spark Streaming + Tranquility Server发送数据到druid

kafka + spark Streaming + Tranquility Server发送数据到druid

  花了很长时间尝试druid官网上说的Tranquility嵌入代码进行实时发送数据到druid,结果失败了,各种各样的原因造成了失败,现在还没有找到原因,在IDEA中可以跑起,放到线上就死活不行,有成功了的同仁希望贴个链接供我来学习学习;后来又尝试了从kafka实时发送到druid,还是有些错误,感觉不太靠谱;最后没办法呀,使用Tranquility Server呗 _ _!

Tranquility Server的配置和启动请移步:https://github.com/druid-io/tranquility/blob/master/docs/server.md

(一)、在启动了自己定制的server之后可以利用druid bin目录下的generate-example-metrics生成测试数据 (定制的server.json如下)

server.json的配置

{
  "dataSources" : {
    "zcx_metrics" : {
      "spec" : {
        "dataSchema" : {
          "dataSource" : "reynold",
          "parser" : {
            "type" : "string",
            "parseSpec" : {
              "timestampSpec" : {
                "column" : "timestamp",
                "format" : "auto"
              },
              "dimensionsSpec" : {
                "dimensions" : [],
                "dimensionExclusions" : [
                  "timestamp",
                  "value"
                ]
              },
              "format" : "json"
            }
          },
          "granularitySpec" : {
            "type" : "uniform",
            "segmentGranularity" : "hour",
            "queryGranularity" : "none"
          },
          "metricsSpec" : [
            {
              "type" : "count",
              "name" : "count"
            },
            {
              "name" : "value_sum",
              "type" : "doubleSum",
              "fieldName" : "value"
            },
            {
              "fieldName" : "value",
              "name" : "value_min",
              "type" : "doubleMin"
            },
            {
              "type" : "doubleMax",
              "name" : "value_max",
              "fieldName" : "value"
            }
          ]
        },
        "ioConfig" : {
          "type" : "realtime"
        },
        "tuningConfig" : {
          "type" : "realtime",
          "maxRowsInMemory" : "100000",
          "intermediatePersistPeriod" : "PT10M",
          "windowPeriod" : "PT10M"
        }
      },
      "properties" : {
        "task.partitions" : "1",
        "task.replicants" : "1"
      }
    }
  },
  "properties" : {
    "zookeeper.connect" : "tagtic-master:2181,tagtic-slave02:2181,tagtic-slave03:2181",
    "druid.discovery.curator.path" : "/druid/discovery",
    "druid.selectors.indexing.serviceName" : "druid/overlord",
    "http.port" : "8200",
    "http.threads" : "16"
  }
}

(二)、创建kafka的topic并往里面发送数据

删除topic:kafka-topics  --delete --topic reynold --zookeeper localhost:2181
创建topic:kafka-topics  --create --topic reynold --zookeeper localhost:2181 --partitions 10 --replication-factor 1
消费数据:kafka-console-consumer --topic reynold --zookeeper localhost:2181 --from-beginning
生产数据:kafka-console-producer --broker-list tagtic-master:9092 --topic reynold

{"count": 1, "value_min": 74.0, "timestamp": "2017-03-09T02:34:24.000Z", "value_max": 74.0, "metricType": "request/latency", "server": "www5.example.com", "http_method": "GET", "value_sum": 74.0, "http_code": "200", "unit": "milliseconds", "page": "/"}
{"count": 1, "value_min": 75.0, "timestamp": "2017-03-09T02:34:24.000Z", "value_max": 75.0, "metricType": "request/latency", "server": "www5.example.com", "http_method": "GET", "value_sum": 75.0, "http_code": "200", "unit": "milliseconds", "page": "/list"}
{"count": 1, "value_min": 143.0, "timestamp": "2017-03-09T02:38:06.000Z", "value_max": 143.0, "metricType": "request/latency", "server": "www2.example.com", "http_method": "GET", "value_sum": 143.0, "http_code": "200", "unit": "milliseconds", "page": "/"}

 (三)、使用spark streaming消费kafka中的数据并通过http发送到druid

object SparkDruid {

  val kafkaParam = Map[String, String](
    "metadata.broker.list" -> "tagtic-master:9092,tagtic-slave01:9092,tagtic-slave02:9092,tagtic-slave03:9092",
    "auto.offset.reset" -> "smallest"
  )

  def main(args: Array[String]): Unit = {
    val sparkContext = new SparkContext(new SparkConf().setMaster("local[4]").setAppName("SparkDruidBeam"))
    val ssc = new StreamingContext(sparkContext, Seconds(3))
    val topic: String = "reynold" //消费的 topic 名字
    val topics: Set[String] = Set(topic) //创建 stream 时使用的 topic 名字集合

    var kafkaStream: InputDStream[(String, String)] = null

    kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParam, topics)

    kafkaStream.map(msg => msg._2).foreachRDD { rdd =>
      rdd.foreach(strJson => Https.post("http://tagtic-master:8200/v1/post/zcx_metrics", strJson))
    }

    ssc.start()
    ssc.awaitTermination()
  }
}

Https类如下:

 

kafka + spark Streaming + Tranquility Server发送数据到druid