首页 > 代码库 > GMM的EM算法实现

GMM的EM算法实现

在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。


1. GMM模型:

每一个 GMM 由 K 个 Gaussian 分布组成,每一个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:


依据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上能够分为两步:首先随机地在这 K个Gaussian Component 之中选一个,每一个 Component 被选中的概率实际上就是它的系数 pi(k) ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就能够了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。

那么怎样用 GMM 来做 clustering 呢?事实上非常简单,如今我们有了数据,假定它们是由 GMM 生成出来的,那么我们仅仅要依据数据推出 GMM 的概率分布来就能够了,然后 GMM 的 K 个 Component 实际上就相应了 K 个 cluster 了。依据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式,而要预计当中的參数的过程被称作“參数预计”。


2. 參数与似然函数:

如今如果我们有 N 个数据点,并如果它们服从某个分布(记作 p(x) ),如今要确定里面的一些參数的值,比如,在 GMM 中,我们就须要确定 影响因子pi(k)、各类均值pMiu(k) 和 各类协方差pSigma(k) 这些參数。 我们的想法是,找到这样一组參数,它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于  ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都非常小,很多非常小的数字相乘起来在计算机里非常easy造成浮点数下溢,因此我们一般会对其取对数,把乘积变成加和 \sum_{i=1}^N \log p(x_i),得到 log-likelihood function 。接下来我们仅仅要将这个函数最大化(通常的做法是求导并令导数等于零,然后解方程),亦即找到这样一组參数值,它让似然函数取得最大值,我们就觉得这是最合适的參数,这样就完毕了參数预计的过程。

以下让我们来看一看 GMM 的 log-likelihood function :


因为在对数函数里面又有加和,我们没法直接用求导解方程的办法直接求得最大值。为了解决问题,我们採取之前从 GMM 中随机选点的办法:分成两步,实际上也就相似于K-means 的两步。



3. 算法流程:

1.  预计数据由每一个 Component 生成的概率(并非每一个 Component 被选中的概率):对于每一个数据 x_i 来说,它由第 k 个 Component 生成的概率为


当中N(xi | μk,Σk)就是后验概率


2. 通过极大似然预计能够通过求到令參数=0得到參数pMiu,pSigma的值。具体请见这篇文章第三部分。


当中 N_k = \sum_{i=1}^N \gamma(i, k) ,而且 \pi_k 也顺理成章地能够预计为 N_k/N 。


3. 反复迭代前面两步,直到似然函数的值收敛为止。



4. matlab实现GMM聚类代码与解释:


说明:fea为训练样本数据,gnd为样本标号。算法中的思想和上面写的一模一样,在最后的推断accuracy方面,因为聚类和分类不同,仅仅是得到一些 cluster ,而并不知道这些 cluster 应该被打上什么标签,或者说。因为我们的目的是衡量聚类算法的 performance ,因此直接假定这一步能实现最优的相应关系,将每一个 cluster 相应到一类上去。一种办法是枚举全部可能的情况并选出最优解,另外,对于这种问题,我们还能够用 Hungarian algorithm 来求解。具体的Hungarian代码我放在了资源里,调用方法已经写在以下函数中了。


注意:资源里我放的是Kmeans的代码,大家下载的时候仅仅要用bestMap.m等几个文件就好~


1. gmm.m,最核心的函数,进行模型与參数确定。

function varargout = gmm(X, K_or_centroids)
% ============================================================
% Expectation-Maximization iteration implementation of
% Gaussian Mixture Model.
%
% PX = GMM(X, K_OR_CENTROIDS)
% [PX MODEL] = GMM(X, K_OR_CENTROIDS)
%
%  - X: N-by-D data matrix.
%  - K_OR_CENTROIDS: either K indicating the number of
%       components or a K-by-D matrix indicating the
%       choosing of the initial K centroids.
%
%  - PX: N-by-K matrix indicating the probability of each
%       component generating each point.
%  - MODEL: a structure containing the parameters for a GMM:
%       MODEL.Miu: a K-by-D matrix.
%       MODEL.Sigma: a D-by-D-by-K matrix.
%       MODEL.Pi: a 1-by-K vector.
% ============================================================
% @SourceCode Author: Pluskid (http://blog.pluskid.org)
% @Appended by : Sophia_qing (http://blog.csdn.net/abcjennifer)
    

%% Generate Initial Centroids
    threshold = 1e-15;
    [N, D] = size(X);
 
    if isscalar(K_or_centroids) %if K_or_centroid is a 1*1 number
        K = K_or_centroids;
        Rn_index = randperm(N); %random index N samples
        centroids = X(Rn_index(1:K), :); %generate K random centroid
    else % K_or_centroid is a initial K centroid
        K = size(K_or_centroids, 1); 
        centroids = K_or_centroids;
    end
 
    %% initial values
    [pMiu pPi pSigma] = init_params();
 
    Lprev = -inf; %上一次聚类的误差
    
    %% EM Algorithm
    while true
        %% Estimation Step
        Px = calc_prob();
 
        % new value for pGamma(N*k), pGamma(i,k) = Xi由第k个Gaussian生成的概率
        % 或者说xi中有pGamma(i,k)是由第k个Gaussian生成的
        pGamma = Px .* repmat(pPi, N, 1); %分子 = pi(k) * N(xi | pMiu(k), pSigma(k))
        pGamma = pGamma ./ repmat(sum(pGamma, 2), 1, K); %分母 = pi(j) * N(xi | pMiu(j), pSigma(j))对全部j求和
 
        %% Maximization Step - through Maximize likelihood Estimation
        
        Nk = sum(pGamma, 1); %Nk(1*k) = 第k个高斯生成每一个样本的概率的和,全部Nk的总和为N。
        
        % update pMiu
        pMiu = diag(1./Nk) * pGamma‘ * X; %update pMiu through MLE(通过令导数 = 0得到)
        pPi = Nk/N;
        
        % update k个 pSigma
        for kk = 1:K 
            Xshift = X-repmat(pMiu(kk, :), N, 1);
            pSigma(:, :, kk) = (Xshift‘ * ...
                (diag(pGamma(:, kk)) * Xshift)) / Nk(kk);
        end
 
        % check for convergence
        L = sum(log(Px*pPi‘));
        if L-Lprev < threshold
            break;
        end
        Lprev = L;
    end
 
    if nargout == 1
        varargout = {Px};
    else
        model = [];
        model.Miu = pMiu;
        model.Sigma = pSigma;
        model.Pi = pPi;
        varargout = {Px, model};
    end
 
    %% Function Definition
    
    function [pMiu pPi pSigma] = init_params()
        pMiu = centroids; %k*D, 即k类的中心点
        pPi = zeros(1, K); %k类GMM所占权重(influence factor)
        pSigma = zeros(D, D, K); %k类GMM的协方差矩阵,每一个是D*D的
 
        % 距离矩阵,计算N*K的矩阵(x-pMiu)^2 = x^2+pMiu^2-2*x*Miu
        distmat = repmat(sum(X.*X, 2), 1, K) + ... %x^2, N*1的矩阵replicateK列
            repmat(sum(pMiu.*pMiu, 2)‘, N, 1) - ...%pMiu^2,1*K的矩阵replicateN行
            2*X*pMiu‘;
        [~, labels] = min(distmat, [], 2);%Return the minimum from each row
 
        for k=1:K
            Xk = X(labels == k, :);
            pPi(k) = size(Xk, 1)/N;
            pSigma(:, :, k) = cov(Xk);
        end
    end
 
    function Px = calc_prob() 
        %Gaussian posterior probability 
        %N(x|pMiu,pSigma) = 1/((2pi)^(D/2))*(1/(abs(sigma))^0.5)*exp(-1/2*(x-pMiu)‘pSigma^(-1)*(x-pMiu))
        Px = zeros(N, K);
        for k = 1:K
            Xshift = X-repmat(pMiu(k, :), N, 1); %X-pMiu
            inv_pSigma = inv(pSigma(:, :, k));
            tmp = sum((Xshift*inv_pSigma) .* Xshift, 2);
            coef = (2*pi)^(-D/2) * sqrt(det(inv_pSigma));
            Px(:, k) = coef * exp(-0.5*tmp);
        end
    end
end


2. gmm_accuracy.m调用gmm.m,计算准确率:

function [ Accuracy ] = gmm_accuracy( Data_fea, gnd_label, K )
%Calculate the accuracy Clustered by GMM model

px = gmm(Data_fea,K);
[~, cls_ind] = max(px,[],1); %cls_ind = cluster label 
Accuracy = cal_accuracy(cls_ind, gnd_label);

    function [acc] = cal_accuracy(gnd,estimate_label)
        res = bestMap(gnd,estimate_label);
        acc = length(find(gnd == res))/length(gnd);
    end

end


3. 主函数调用

gmm_acc = gmm_accuracy(fea,gnd,N_classes);








写了本文进行总结后自己非常受益,也希望大家能够好好YM下上面pluskid的gmm.m,不光是算法,当中的矩阵处理代码也写的非常简洁,非常值得学习。

另外看了两份东西非常受益,一个是pluskid大牛的《漫谈 Clustering (3): Gaussian Mixture Model》,一个是JerryLead的EM算法具体解释,大家有兴趣也能够看一下,写的非常好。



关于Machine Learning很多其它的学习资料与相关讨论将继续更新,敬请关注本博客和新浪微博Sophia_qing




GMM的EM算法实现