首页 > 代码库 > 字符串匹配算法——KMP算法

字符串匹配算法——KMP算法

1、字符串匹配

字符串匹配是计算机的基本任务之一。

字符串匹配是什么?举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth(《计算机程序设计艺术》的作者)。


2、KMP算法

这个算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。


2.1

技术分享

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。


2.2

技术分享

因为B与A不匹配,搜索词再往后移。


2.3

技术分享

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。


2.4

技术分享

接着比较字符串和搜索词的下一个字符,还是相同。


2.5

技术分享

直到字符串有一个字符,与搜索词对应的字符不相同为止。


2.6

技术分享

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。


2.7

技术分享

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。


2.8

技术分享

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。


2.9

技术分享

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。


2.10

技术分享

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。


2.11

技术分享


因为空格与A不匹配,继续后移一位。


2.12

技术分享

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。


2.13

技术分享

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。


2.14

技术分享

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。


2.15

技术分享

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

- "A"的前缀和后缀都为空集,共有元素的长度为0;

- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。


2.16

技术分享

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。


算法时间复杂度为O(m+n)(其中m为字符段长度,n为匹配模式的长度)。


3、算法实践

 

void getNext(const std::string &p, std::vector<int> &next)
{
    next.resize(p.size());
    next[0] = -1;

    int i = 0, j = -1;
    
    while (i != p.size() - 1)
    {
        //这里注意,i==0的时候实际上求的是next[1]的值,以此类推
        if (j == -1 || p[i] == p[j])
        {
            ++i;
            ++j;
            next[i] = j;
        }
        else
        {
            j = next[j];
        }
    }
}

int kmp(const std::string& s, const std::string& p, const int sIndex = 0)
{
    std::vector<int>next(p.size());
    getNext(p, next);//获取next数组,保存到vector中

    int i = sIndex, j = 0;
    while(i != s.length() && j != p.length())
    {
        if (j == -1 || s[i] == p[j])
        {
            ++i;
            ++j;
        }
        else
        {
            j = next[j];
        }
    }

    return j == p.length() ? i - j: -1;
}

 

字符串匹配算法——KMP算法