首页 > 代码库 > HDU 2815 Mod Tree (扩展 Baby Step Giant Step )

HDU 2815 Mod Tree (扩展 Baby Step Giant Step )

Mod Tree

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 96 Accepted Submission(s): 38
 
Problem Description

  The picture indicates a tree, every node has 2 children.
  The depth of the nodes whose color is blue is 3; the depth of the node whose color is pink is 0.
  Now out problem is so easy, give you a tree that every nodes have K children, you are expected to calculate the minimize depth D so that the number of nodes whose depth is D equals to N after mod P.
 
Input
The input consists of several test cases.
Every cases have only three integers indicating K, P, N. (1<=K, P, N<=10^9)
 
Output

            The minimize D.
If you can’t find such D, just output “Orz,I can’t find D!”
 
Sample Input
3 78992 4534 1314520 655365 1234 67
 
Sample Output
Orz,I can’t find D!820
 
Author
AekdyCoin

 

 

证明来自:

http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4

 

 

#include <iostream>#include <cstdio>#include <string>#include <cstring>#include <algorithm>#include <cmath>using namespace std;typedef long long LL ;const int N = 100010;struct B{    LL num , id ;    bool operator < ( const B &a ) const{        if( num != a.num ) return num < a.num;        else return id < a.id ;    }}baby[N];LL n , k , p ;int tot ;void e_gcd( LL &x , LL &y , LL &d , LL a , LL b ){    if( b == 0 ){ x = 1 , y = 0 ; d = a ; return ; }    e_gcd( y , x , d , b , a%b );    y -= x* (a/b) ;}int inv( LL a, LL b ,LL n ){    LL d,e,x,y ;    e_gcd(x,y,d,a,n);    e = ( x * b ) % n ;    return e < 0 ? e + n : e;}inline LL gcd(LL a, LL b ){ return b == 0 ? a : gcd( b , a % b ) ; }LL quick_mod( LL a , LL b ,LL mod ){    LL res =1 ;    while( b )    {        if( b &1 ) res = res * a % mod ;        a = a * a % mod ;        b >>= 1 ;    }    return res ;}int find( LL n ){    int l = 0 , r = tot - 1 ;    while( l <= r ){        int m = (l + r) >> 1;        if( baby[m].num == n){            return baby[m].id;        }        else if( baby[m].num < n )            l = m + 1;        else            r = m - 1 ;    }    return -1;}void run(){    if( p <= n ){         puts("Orz,I can’t find D!");         return ;    }    LL temp = 1 % p ;    for( int i = 0  ; i < 100 ; ++i ) {        if( temp == n ){                printf("%d\n",i);                return ;        }        temp = temp * k % p ;    }    LL d = 0 , kk = 1 % p ;    while( ( temp = gcd( k , p ) ) != 1 ){        if( n % temp ) {             puts("Orz,I can’t find D!");             return ;        }        d ++ ;        p /= temp;        n /= temp;        kk =  k / temp * kk % p ;    }    int m = ( int ) ceil( sqrt( (double)p ) );    baby[0].num = 1 , baby[0].id = 0 ;    for( int i = 1 ; i <= m ; ++i ){        baby[i].num = baby[i-1].num * k % p ;        baby[i].id = i ;    }    sort( baby , baby + m + 1 ) ;    tot = 1 ;    for( int i = 1 ; i <= m ; ++i ){        if(baby[i].num != baby[tot-1].num ){            baby[tot++] = baby[i];        }    }    LL am = quick_mod( k , m , p );    for( int j = 0 ; j <= m ; ++j ){        temp = inv(kk,n,p);        if( temp < 0 ){            continue ;        }        int pos = find( temp );        if( pos != -1 ){            printf("%d\n", m * j + d + pos );            return ;        }        kk = kk * am % p    ;    }     puts("Orz,I can’t find D!");}int main(){    #ifdef LOCAL        freopen("in.txt","r",stdin);    #endif // LOCAL    while( scanf("%I64d%I64d%I64d",&k,&p,&n) != EOF ) run();}

 

HDU 2815 Mod Tree (扩展 Baby Step Giant Step )