首页 > 代码库 > Baby_Step,Gaint_Step(分析具体解释+模板)

Baby_Step,Gaint_Step(分析具体解释+模板)

  下面是总结自他人博客资料。以及本人自己的学习经验。


【Baby_Step,Gaint_Step定义】

高次同余方程。

   BL == N (mod P)

求解最小的L。因为数据范围非常大,暴力不行

这里用到baby_step,giant_step算法。意为先小步。后大步。

令L=i*m+j  (m=ceil(sqrt(p-1))),

那么原式化为 B^(i*m)*B^j==N(MOD P)————》B^j===N*B^(-i*m)(MOD P)

我们先预处理B^0,B^1,B^2……B^(m-1),存入HASH表。,这一步就是baby-step,每次移动1

然后求出B^-m,枚举i,假设存在B^(-i*m)存在于HASH表中,说明存在解L=i*m+j    ,这一步为giant_step,每次移动m

至于B^(-m)的求法。能够先求出B的逆元,也就是B^-1。

注意以上解法是最主要的,仅仅能对于gcd(B,P)==1


【解体思路】

我们能够做一个等价
x = i * m + j  ( 0 <= i < m, 0 <=j < m) m = Ceil ( sqrt( C) )
而这么分解的目的无非是为了转化为:
(A^i)^m * A^j = B ( mod C)

之后做少许暴力的工作就能够解决这个问题:
(1) for i = 0 -> m, 插入Hash (i, A^i mod C)
(2) 枚举 i ,对于每个枚举到的i,令  AA = (A^m)^i mod C
我们有
AA * A^j = B (mod C)
显然AA,B,C均已知,而因为C为素数,那么(AA,C)无条件为1
于是对于这个模方程解的个数唯一(能够利用扩展欧几里得或 欧拉定理来求解)
那么对于得到的唯一解X,在Hash表中寻找,假设找到。则返回 i * m + j
注意:
因为i从小到大的枚举,而Hash表中存在的j必定是对于某个剩余系内的元素X 是最小的(就是指标)
所以显然此时就能够得到最小解


假设须要得到 x > 0的解,那么仅仅须要在上面的步骤中推断 当 i * m + j > 0 的时候才返回

到眼下为止,以上的算法都不存在争议,大家实现的代码均相差不大。可见当C为素数的时候,此类离散对数的问题能够变得十分easy实现。


【模板】

poj 2417

/*    

      NYIST_ZSJ
     【普通版】Baby_Step,Gaint_Step
      形式:A^x = B(mod C)
      使用条件:
              1、在数据范围非常大,无法暴力的情况下

              2、C必然为素数
     返回结果:
             假设有解。则一定返回的最小解。
*/

//高速幂求a^b

//a^b%n
LL pow_mod(LL a,LL b,LL n){     
    LL res = 1;
    while(b){
        if(b&1)
            res = (res*a)%n;
        a = (a*a)%n;
        b = b >> 1;
    }
    return res;
}


//求解模方程a^x = b(mod n),n为素数 ,无解返回-1
//费马小定理a^(n-1) = 1(mod n),n为素数.a^0 = 1,所以循环节小于等于n,即假设存在解。则最小解x <= n

//a^x = b(mod n)
LL BSGS(LL a,LL b,LL n){             
    LL m,v,e = 1;
    m = ceil(sqrt(n+0.5));           //x = i*m + j            
    //v = inv(pow_mod(a,m,n),n)       //a^m*v = 1(mod n)
    v = pow_mod(a,n-m-1,n);           //v = a^-m
    map<LL,LL> x;
    x[1] = m;
    for(int i = 1;i < m;++i){           //先一步(Baby_Step),建立哈希表。保存x^0,x^1,.....x^m-1
        e = (e*a)%n;
        if(!x[e])x[e] = i;
    }
    for(int i = 0;i < m;++i){           //在每次m次方加(Gaint_Step),遍历全部1<=x<=n
        if(x[b]){
            LL num = x[b];
            x.clear();                    //清空
            return i*m + (num == m?

0:num); } //推断a^j =? b*a^(-m*i)%n,是否存在于哈希表中。假设存在着说明a^(i*m+j) = b(mod c)成立 b = (b*v)%n; //b = b/(a^m) } return -1; //无解 }



【总结】

  上面算法总的时间复杂度接近于O(sqrt(C)*log(C)) (C是模)


主要參考资料:冷月之殇【模板】、ACM_cxlove【定义】、AekdyCoin【思路】


??

Baby_Step,Gaint_Step(分析具体解释+模板)