首页 > 代码库 > 内核request_mem_region 和 ioremap的理解

内核request_mem_region 和 ioremap的理解

request_mem_region仅仅是linux对IO内存的管理,意思指这块内存我已经占用了,别人就不要动了,也不能被swap出去。使用这些寄存器时,可以不调用request_mem_region,但这样的话就不能阻止别人对他的访问了。

 

http://blog.csdn.net/skyflying2012/article/details/8672011\

几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPU对IO端口的编址方式有两种


  (1)I/O映射方式(I/O-mapped)

  典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间",CPU通过专门的I/O指令(如X86的IN和OUT指令)来访问这一空间中的地址单元。


  (2)内存映射方式(Memory-mapped)

  RISC指令系统的CPU(如MIPS ARM PowerPC等)通常只实现一个物理地址空间,像这种情况,外设的I/O端口的物理地址就被映射到内存地址空间中,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。


  但是,这两者在硬件实现上的差异对于软件来说是完全透明的,驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源。

 

  一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,由硬件的设计决定。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间

    但要使用I/O内存首先要申请,然后才能映射,使用I/O端口首先要申请,或者叫请求,对于I/O端口的请求意思是让内核知道你要访问这个端口,这样内核知道了以后它就不会再让别人也访问这个端口了.毕竟这个世界僧多粥少啊.申请I/O端口的函数是request_region, 申请I/O内存的函数是request_mem_region,来自include/linux/ioport.h,  如下:

  * Convenience shorthand with allocation */

#define request_region(start,n,name)    __request_region(&ioport_resource, (start), (n), (name))

#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name))

#define rename_region(region, newname) do { (region)->name = (newname); } while (0)

 

extern struct resource * __request_region(struct resource *,

                                         resource_size_t start,

                                         resource_size_t n, const char *name);


这里关键来解析一下request_mem_region函数。

Linux把基于I/O映射方式的I/O端口和基于内存映射方式的I/O端口资源统称为“I/O区域”(I/O Region)。I/O Region仍然是一种I/O资源,因此它仍然可以用resource结构类型来描述。

Linux是以一种倒置的树形结构来管理每一类I/O资源(如:I/O端口、外设内存、DMA和IRQ)的。每一类I/O资源都对应有一颗倒置的资源树,树中的每一个节点都是一个resource结构,而树的根结点root则描述了该类资源的整个资源空间。


1.结构体
   1.1>struct resource iomem_resource = { "PCI mem", 0x00000000, 0xffffffff, IORESOURCE_MEM };
   1.2>struct resource {
                const char *name;
                unsigned long start, end;
                unsigned long flags;
                struct resource *parent, *sibling, *child;
             };
2.调用函数
   request_mem_region(S1D_PHYSICAL_REG_ADDR,S1D_PHYSICAL_REG_SIZE, "EpsonFB_RG")
#define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name))
__request_region检查是否可以安全占用起始物理地址S1D_PHYSICAL_REG_ADDR之后的连续S1D_PHYSICAL_REG_SIZE字节大小空间

struct resource * __request_region(struct resource *parent, unsigned long start, unsigned long n, const char *name)
{
    struct resource *res = kmalloc(sizeof(*res), GFP_KERNEL);

    if (res) {
        memset(res, 0, sizeof(*res));
         res->name = name;
         res->start = start;
         res->end = start + n - 1;
         res->flags = IORESOURCE_BUSY;

         write_lock(&resource_lock);

        for (;;) {
            struct resource *conflict;

             conflict = __request_resource(parent, res);    

             //sibling parent下的所有单元,检测申请部分是否存在交叠冲突
            if (!conflict)                                

             //conflict=0;申请成功,正常安置了[start,end]到相应位置
                break;
            if (conflict != parent) {
                 parent = conflict;
                if (!(conflict->flags & IORESOURCE_BUSY))
                    continue;
            }
              kfree
(res);                                   

             //检测到了资源交叠冲突,kfree归还kmalloc申请的内存
             res = NULL;
            break;
        }
         write_unlock(&resource_lock);
    }
    return res;
}

static struct resource * __request_resource(struct resource *root, struct resource *new)
{
    unsigned long start = new->start;
    unsigned long end = new->end;
    struct resource *tmp, **p;

    if (end < start)
        return root;
    if (start < root->start)
        return root;
    if (end > root->end)
        return root;
     p = &root->child;                                     

    //root下的第一个链表元素*p.[child链表是以I/O资源物理地址从低到高的顺序排列的]
    for (;;) {
         tmp = *p;
        if (!tmp || tmp->start > end) {
            new->sibling = tmp;
            *p = new;
//可以从root->child=null开始我们的分析考虑,此时tmp=null,那么第一个申请将以!tmp条件满足而进入
//这时root->child的值为new指针,new->sibling = tmp = null;当第二次申请发生时:如果tmp->start > end成立,
//那么,root->child的值为new指针,new->sibling = tmp;这样就链接上了,空间分布图如:
//child=[start,end]-->[tmp->start,tmp->end](1);

//如果条件tmp->start > end不成立,那么只能是!tmp条件进入
//那么,root->child的值不变,tmp->sibling = new;new->sibling = tmp = null这样就链接上了,空间分布图如:
//child=[child->start,child->end]-->[start,end](2);
//当第三次申请发生时:如果start在(2)中的[child->end,end]之间,那么tmp->end < start将成立,继而continue,
//此时tmp = (2)中的[start,end],因为tmp->start < end,所以继续执行p = &tmp->slibing = null,
//因为tmp->end > start,所以资源冲突,返回(2)中的[start,end]域
//综上的两个边界值情况和一个中间值情况的分析,可以知道代码实现了一个从地地址到高地址的顺序链表
//模型图:childe=[a,b]-->[c,d]-->[e,f],此时有一个[x,y]需要插入进去,tmp作为sibling指针游动
//tmp指向child=[a,b],
//tmp指向[a,b],当tmp->start>y时,插入后的链接图为:child=[x,y]-->[a,b]-->[c,d]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向[c,d],当tmp->start>y时,插入后的链接图为:child=[a,b]-->[x,y]-->[c,d]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向[e,f],当tmp->start>y时,插入后的链接图为:child=[a,b]-->[c,d]-->[x,y]-->[e,f]-->null;当tmp->end>=x时,冲突返回tmp
//tmp指向null                  ,插入后的链接图为:child=[a,b]-->[c,d]-->[e,f]-->[x,y]-->null;
//顺利的达到了检测冲突,顺序链接的目的
            new->parent = root;    
            return NULL;
        }
         p = &tmp->sibling;
        if (tmp->end < start)
            continue;
        return tmp;
    }
}


其实说白了,request_mem_region函数并没有做实际性的映射工作,只是告诉内核要使用一块内存地址,声明占有,也方便内核管理这些资源


重要的还是ioremap函数,ioremap主要是检查传入地址的合法性,建立页表(包括访问权限),完成物理地址到虚拟地址的转换。

 

void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);

  iounmap函数用于取消ioremap()所做的映射,原型如下:

void iounmap(void * addr);

  这两个函数都是实现在mm/ioremap.c文件中。

  在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。如在x86平台上,读写I/O的函数如下所示:

#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))
#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))
#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))

#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))
#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))
#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))

#define memset_io(a,b,c) memset(__io_virt(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))
#define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c))

  最后,特别强调驱动程序中mmap函数的实现方法。用mmap映射一个设备,意味着使用户空间的一段地址关联到设备内存上,这使得只要程序在分配的地址范围内进行读取或者写入,实际上就是对设备的访问。

内核request_mem_region 和 ioremap的理解