首页 > 代码库 > Linux IO模型与Java NIO
Linux IO模型与Java NIO
概述
看Java NIO一篇文章的时候又看到了“异步非阻塞”这个概念,一直处于似懂非懂的状态,想解释下到底什么是异步 什么是非阻塞,感觉抓不住重点。决定仔细研究一下。
本文试图研究以下问题:
web server原理,bio的connector与nio的connector在架构上到底什么区别?
NIO的优势到底在哪里,是如何应用到实践中的?
同步/异步、阻塞/非阻塞到底是什么概念,引出的IO模型同步阻塞、同步非阻塞、异步阻塞、异步非阻塞的具体使用场景,适用的场景是怎样的?
bio nio也只是对内核的封装,Linux内核的支持是怎样的?再往下TCP的接口调用、参数的设置是否有异同?
这里就不浪费篇幅介绍基础,文中结论是学习、思考的记录 topic比较大,欢迎讨论
1. 数据的IO
1.1 IO模型
“一切皆文件”,Linux对于文件、字符设备、块设备、socket的访问都是以抽象为文件的方式进行。
Linux与Unix都提供了五种IO模型,在参考1 参考2中都涉及:
阻塞IO
非阻塞IO
IO复用
信号驱动
异步IO
但是在实际应用中,二、四很少使用。传统BIO使用1,Java NIO使用3,JDK7 提供了5的支持。
1.2 Java NIO被称为Non-block的疑问
Java NIO使用了事件驱动模型,以Linux为例 底层通过epoll支持,使用epoll的优点:
避免大量线程阻塞,避免浪费线程资源,避免线程上下文切换浪费CPU资源
打开的fd不受限制(还是受操作系统的限制但进程级不再受限)
IO效率不会随着fd数目增加而线性下降
使用mmap加速内核与用户空间消息传递
在参考3的最终模型中,称之为Non-block
但这里会造成混淆:
mainReactor、subReactor一直等待事件发生,是阻塞还是非阻塞?
ThreadPool中的worker一直处于wait状态,event发生收到Reactor的调度会触发后续操作,是阻塞还是非阻塞?
上面问题的答案貌似是阻塞。那为何叫这个模型为非阻塞?
我的理解是阻塞是对应用层而言,应用层并没有检测accept、read、write是否完成,而是等待调度所以叫非阻塞。避免应用层检测的好处上面已经提过 避免过多线程浪费资源、避免上下文切换
1.3 什么是异步
可以理解为应用程序调用了io函数后,继续执行,io操作完成后可以通过回调函数获取结果。
JDK7加入了对io的异步支持,如下面的例子:
public class Test { public static void main(String[] args) throws Exception { AsynchronousChannelGroup group = AsynchronousChannelGroup.withThreadPool(Executors.newFixedThreadPool(10)); final AsynchronousServerSocketChannel server = AsynchronousServerSocketChannel.open(group).bind(new InetSocketAddress("127.0.0.1", 8080)); server.accept(null, new CompletionHandler<AsynchronousSocketChannel, Void>() { @Override public void completed(AsynchronousSocketChannel channel, Void attachment) { server.accept(null, this); try { String now = new Date().toString(); ByteBuffer buffer = ByteBuffer.wrap(now.getBytes()); Future<Integer> f = channel.write(buffer); f.get(); channel.close(); } catch (Exception e) { e.printStackTrace(); } } @Override public void failed(Throwable exc, Void attachment) { exc.printStackTrace(); } }); System.out.println("end........ "); group.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS); } }
与此类似,使用多线程也可以实现异步。比如访问数据库,下游服务等会block主线程的操作,可以放在新的线程中执行。
JDK对异步的支持很早就出现了,JDK5就加入了concurrent包 对于多线程异步的支持:
public class Test { public static void main(String[] args) throws Exception{ //第一种方式 ExecutorService executor = Executors.newCachedThreadPool(); Task task = new Task(); Future future = executor.submit(task); executor.shutdown(); System.out.println("task运行结果"+future.get()); } } class Task implements Callable<Integer>{ @Override public Integer call() throws Exception { Thread.sleep(3000); int sum = 0; for(int i=0;i<100;i++) sum += i; return sum; } }
1.4 同步与异步
从上面的说明可以得出结论,实际应用中的IO模型:
同步阻塞:传统的BIO属于这种类型
同步非阻塞:使用IO复用(select epoll)。
异步非阻塞:使用AIO,基于回调或者阻塞等待异步操作完成后继续主程序。
2. Java NIO
2.1 核心概念
Channel
Buffer
Selector
2.2 NIO的优势
Nio与传统BIO相比的优势在于利用了IO多路复用
面向缓冲区
避免资源过高占用,BIO中等待线程过高会引发两类问题:一是占用过多线程资源,二是过多线程导致的上下问切换浪费CPU资源
高并发连接时,性能不会线性下降
epoll可以通过mmap加速内核空间与用户空间消息传递
文件锁
3. NIO应用
3.1 Tomcat connector
代码版本:6.0.44
tomcat实现NIOEndPoint提供对NIO的支持
Acceptor内部类实现接受用户请求
Poller实现对事件的处理
Tomcat的实现代码中包含不少Fixme注释,以及异常的特殊处理(捕获后仅打印堆栈 程序继续运行)
重点代码:
NioEndPoint.start() public void start() throws Exception { // Initialize socket if not done before if (!initialized) { init(); } if (!running) { running = true; paused = false; // Create worker collection if (getUseExecutor()) { if ( executor == null ) { TaskQueue taskqueue = new TaskQueue(); TaskThreadFactory tf = new TaskThreadFactory(getName() + "-exec-"); executor = new ThreadPoolExecutor(getMinSpareThreads(), getMaxThreads(), 60, TimeUnit.SECONDS,taskqueue, tf); taskqueue.setParent( (ThreadPoolExecutor) executor, this); } } else if ( executor == null ) {//avoid two thread pools being created workers = new WorkerStack(maxThreads); } // Start poller threads pollers = new Poller[getPollerThreadCount()]; for (int i=0; i<pollers.length; i++) { pollers[i] = new Poller(); Thread pollerThread = new Thread(pollers[i], getName() + "-ClientPoller-"+i); pollerThread.setPriority(threadPriority); pollerThread.setDaemon(true); pollerThread.start(); } // Start acceptor threads for (int i = 0; i < acceptorThreadCount; i++) { Thread acceptorThread = new Thread(new Acceptor(), getName() + "-Acceptor-" + i); acceptorThread.setPriority(threadPriority); acceptorThread.setDaemon(daemon); acceptorThread.start(); } } }
Acceptor
protected class Acceptor implements Runnable { /** * The background thread that listens for incoming TCP/IP connections and * hands them off to an appropriate processor. */ public void run() { // Loop until we receive a shutdown command while (running) { // Loop if endpoint is paused while (paused) { try { Thread.sleep(1000); } catch (InterruptedException e) { // Ignore } } try { // Accept the next incoming connection from the server socket SocketChannel socket = serverSock.accept(); // Hand this socket off to an appropriate processor //TODO FIXME - this is currently a blocking call, meaning we will be blocking //further accepts until there is a thread available. if ( running && (!paused) && socket != null ) { //processSocket(socket); if (!setSocketOptions(socket)) { try { socket.socket().close(); socket.close(); } catch (IOException ix) { if (log.isDebugEnabled()) log.debug("", ix); } } } }catch (SocketTimeoutException sx) { //normal condition }catch ( IOException x ) { if ( running ) log.error(sm.getString("endpoint.accept.fail"), x); } catch (OutOfMemoryError oom) { try { oomParachuteData = null; releaseCaches(); log.error("", oom); }catch ( Throwable oomt ) { try { try { System.err.println(oomParachuteMsg); oomt.printStackTrace(); }catch (Throwable letsHopeWeDontGetHere){} }catch (Throwable letsHopeWeDontGetHere){} } } catch (Throwable t) { log.error(sm.getString("endpoint.accept.fail"), t); } }//while }//run }
Poller:注册、处理事件
public void add(final NioChannel socket, final int interestOps) { PollerEvent r = eventCache.poll(); if ( r==null) r = new PollerEvent(socket,null,interestOps); else r.reset(socket,null,interestOps); addEvent(r); } /** * Processes events in the event queue of the Poller. * * @return <code>true</code> if some events were processed, * <code>false</code> if queue was empty */ public boolean events() { boolean result = false; Runnable r = null; while ( (r = (Runnable)events.poll()) != null ) { result = true; try { r.run(); if ( r instanceof PollerEvent ) { ((PollerEvent)r).reset(); eventCache.offer((PollerEvent)r); } } catch ( Throwable x ) { log.error("",x); } } return result; } public void register(final NioChannel socket) { socket.setPoller(this); KeyAttachment key = keyCache.poll(); final KeyAttachment ka = key!=null?key:new KeyAttachment(); ka.reset(this,socket,getSocketProperties().getSoTimeout()); PollerEvent r = eventCache.poll(); ka.interestOps(SelectionKey.OP_READ);//this is what OP_REGISTER turns into. if ( r==null) r = new PollerEvent(socket,ka,OP_REGISTER); else r.reset(socket,ka,OP_REGISTER); addEvent(r); } public void cancelledKey(SelectionKey key, SocketStatus status, boolean dispatch) { try { if ( key == null ) return;//nothing to do KeyAttachment ka = (KeyAttachment) key.attachment(); if (ka != null && ka.getComet() && status != null) { //the comet event takes care of clean up //processSocket(ka.getChannel(), status, dispatch); ka.setComet(false);//to avoid a loop if (status == SocketStatus.TIMEOUT ) { processSocket(ka.getChannel(), status, true); return; // don‘t close on comet timeout } else { processSocket(ka.getChannel(), status, false); //don‘t dispatch if the lines below are cancelling the key } } key.attach(null); if (ka!=null) handler.release(ka.getChannel()); if (key.isValid()) key.cancel(); if (key.channel().isOpen()) try {key.channel().close();}catch (Exception ignore){} try {if (ka!=null) ka.channel.close(true);}catch (Exception ignore){} try {if (ka!=null && ka.getSendfileData()!=null && ka.getSendfileData().fchannel!=null && ka.getSendfileData().fchannel.isOpen()) ka.getSendfileData().fchannel.close();}catch (Exception ignore){} if (ka!=null) ka.reset(); } catch (Throwable e) { if ( log.isDebugEnabled() ) log.error("",e); // Ignore } } /** * The background thread that listens for incoming TCP/IP connections and * hands them off to an appropriate processor. */ public void run() { // Loop until we receive a shutdown command while (running) { try { // Loop if endpoint is paused while (paused && (!close) ) { try { Thread.sleep(100); } catch (InterruptedException e) { // Ignore } } boolean hasEvents = false; hasEvents = (hasEvents | events()); // Time to terminate? if (close) { timeout(0, false); break; } int keyCount = 0; try { if ( !close ) { if (wakeupCounter.getAndSet(-1) > 0) { //if we are here, means we have other stuff to do //do a non blocking select keyCount = selector.selectNow(); } else { keyCount = selector.select(selectorTimeout); } wakeupCounter.set(0); } if (close) { timeout(0, false); selector.close(); break; } } catch ( NullPointerException x ) { //sun bug 5076772 on windows JDK 1.5 if ( log.isDebugEnabled() ) log.debug("Possibly encountered sun bug 5076772 on windows JDK 1.5",x); if ( wakeupCounter == null || selector == null ) throw x; continue; } catch ( CancelledKeyException x ) { //sun bug 5076772 on windows JDK 1.5 if ( log.isDebugEnabled() ) log.debug("Possibly encountered sun bug 5076772 on windows JDK 1.5",x); if ( wakeupCounter == null || selector == null ) throw x; continue; } catch (Throwable x) { log.error("",x); continue; } //either we timed out or we woke up, process events first if ( keyCount == 0 ) hasEvents = (hasEvents | events()); Iterator iterator = keyCount > 0 ? selector.selectedKeys().iterator() : null; // Walk through the collection of ready keys and dispatch // any active event. while (iterator != null && iterator.hasNext()) { SelectionKey sk = (SelectionKey) iterator.next(); KeyAttachment attachment = (KeyAttachment)sk.attachment(); // Attachment may be null if another thread has called // cancelledKey() if (attachment == null) { iterator.remove(); } else { attachment.access(); iterator.remove(); processKey(sk, attachment); } }//while //process timeouts timeout(keyCount,hasEvents); if ( oomParachute > 0 && oomParachuteData == null ) checkParachute(); } catch (OutOfMemoryError oom) { try { oomParachuteData = null; releaseCaches(); log.error("", oom); }catch ( Throwable oomt ) { try { System.err.println(oomParachuteMsg); oomt.printStackTrace(); }catch (Throwable letsHopeWeDontGetHere){} } } }//while synchronized (this) { this.notifyAll(); } stopLatch.countDown(); } protected boolean processKey(SelectionKey sk, KeyAttachment attachment) { boolean result = true; try { if ( close ) { cancelledKey(sk, SocketStatus.STOP, false); } else if ( sk.isValid() && attachment != null ) { attachment.access();//make sure we don‘t time out valid sockets sk.attach(attachment);//cant remember why this is here NioChannel channel = attachment.getChannel(); if (sk.isReadable() || sk.isWritable() ) { if ( attachment.getSendfileData() != null ) { processSendfile(sk,attachment,true, false); } else if ( attachment.getComet() ) { //check if thread is available if ( isWorkerAvailable() ) { //set interest ops to 0 so we don‘t get multiple //invokations for both read and write on separate threads reg(sk, attachment, 0); //read goes before write if (sk.isReadable()) { //read notification if (!processSocket(channel, SocketStatus.OPEN)) processSocket(channel, SocketStatus.DISCONNECT); } else { //future placement of a WRITE notif if (!processSocket(channel, SocketStatus.OPEN)) processSocket(channel, SocketStatus.DISCONNECT); } } else { result = false; } } else { //later on, improve latch behavior if ( isWorkerAvailable() ) { unreg(sk, attachment,sk.readyOps()); boolean close = (!processSocket(channel)); if (close) { cancelledKey(sk,SocketStatus.DISCONNECT,false); } } else { result = false; } } } } else { //invalid key cancelledKey(sk, SocketStatus.ERROR,false); } } catch ( CancelledKeyException ckx ) { cancelledKey(sk, SocketStatus.ERROR,false); } catch (Throwable t) { log.error("",t); } return result; } PollerEvent public class PollerEvent implements Runnable { protected NioChannel socket; protected int interestOps; protected KeyAttachment key; public PollerEvent(NioChannel ch, KeyAttachment k, int intOps) { reset(ch, k, intOps); } public void reset(NioChannel ch, KeyAttachment k, int intOps) { socket = ch; interestOps = intOps; key = k; } public void reset() { reset(null, null, 0); } public void run() { if ( interestOps == OP_REGISTER ) { try { socket.getIOChannel().register(socket.getPoller().getSelector(), SelectionKey.OP_READ, key); } catch (Exception x) { log.error("", x); } } else { final SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector()); try { boolean cancel = false; if (key != null) { final KeyAttachment att = (KeyAttachment) key.attachment(); if ( att!=null ) { //handle callback flag if (att.getComet() && (interestOps & OP_CALLBACK) == OP_CALLBACK ) { att.setCometNotify(true); } else { att.setCometNotify(false); } interestOps = (interestOps & (~OP_CALLBACK));//remove the callback flag att.access();//to prevent timeout //we are registering the key to start with, reset the fairness counter. int ops = key.interestOps() | interestOps; att.interestOps(ops); key.interestOps(ops); att.setCometOps(ops); } else { cancel = true; } } else { cancel = true; } if ( cancel ) socket.getPoller().cancelledKey(key,SocketStatus.ERROR,false); }catch (CancelledKeyException ckx) { try { socket.getPoller().cancelledKey(key,SocketStatus.DISCONNECT,true); }catch (Exception ignore) {} } }//end if }//run public String toString() { return super.toString()+"[intOps="+this.interestOps+"]"; } }
3.2 Jetty NIO
3.3 Netty
编码解码:可以定制数据的编码解码方式,使用高效的二进制数据。
多协议开发:可以基于http或者私有协议
特性:
0拷贝
异步非阻塞
内存池ByteBuf
主从Reactor
无锁化的串行设计理念
TCP参数定制
3.4 总结
比较Tomcat、jetty与Netty可以发现,Tomcat、Jetty的connector只是对nio接口的简单实现,Netty提供了更方便使用的可编程API,提供了更丰富的高级功能。
参考
Unix网络编程 Volumn1
Linux网络编程
scale in java
Netty权威指南
Netty系列之Netty高性能之道
本文出自 “Ying:好记性不如烂笔头” 博客,请务必保留此出处http://yingtju.blog.51cto.com/3760152/1908204
Linux IO模型与Java NIO